|
|
Comprehensive Python Cheatsheet =============================== <sup>[Download text file](https://raw.githubusercontent.com/gto76/python-cheatsheet/master/README.md) or [Fork me on GitHub](https://github.com/gto76/python-cheatsheet). </sup>
![Monty Python](web/image_888.jpeg)
Main ---- ```python if __name__ == '__main__': main() ```
List ---- ```python <list> = <list>[from_inclusive : to_exclusive : step_size] <list>.append(<el>) <list>.extend(<collection>) <list> += [<el>] <list> += <collection> ```
```python <list>.sort() <list>.reverse() <list> = sorted(<collection>) <iter> = reversed(<list>) ```
```python sum_of_elements = sum(<collection>) elementwise_sum = [sum(pair) for pair in zip(list_a, list_b)] sorted_by_second = sorted(<collection>, key=lambda el: el[1]) sorted_by_both = sorted(<collection>, key=lambda el: (el[1], el[0])) flattened_list = list(itertools.chain.from_iterable(<list>)) list_of_chars = list(<str>) product_of_elems = functools.reduce(lambda out, x: out * x, <collection>) no_duplicates = list(dict.fromkeys(<list>)) ```
```python index = <list>.index(<el>) # Returns first index of item. <list>.insert(index, <el>) # Inserts item at index and moves the rest to the right. <el> = <list>.pop([index]) # Removes and returns item at index or from the end. <list>.remove(<el>) # Removes first occurrence of item. <list>.clear() # Removes all items. ```
Dictionary ---------- ```python <view> = <dict>.keys() <view> = <dict>.values() <view> = <dict>.items() ```
```python value = <dict>.get(key, default) # Returns default if key does not exist. value = <dict>.setdefault(key, default) # Same, but also adds default to dict. <dict> = collections.defaultdict(<type>) # Creates a dictionary with default value of type. <dict> = collections.defaultdict(lambda: 1) # Creates a dictionary with default value 1. ```
```python <dict>.update(<dict>) # Or: dict_a = {**dict_a, **dict_b}. <dict> = dict(<list>) # Initiates a dict from list of key-value pairs. <dict> = dict(zip(keys, values)) # Initiates a dict from two lists. <dict> = dict.fromkeys(keys [, value]) # Initiates a dict from list of keys. ```
```python value = <dict>.pop(key) # Removes item from dictionary. {k: v for k, v in <dict>.items() if k in keys} # Filters dictionary by keys. ```
### Counter
```python >>> from collections import Counter >>> colors = ['blue', 'red', 'blue', 'yellow', 'blue', 'red'] >>> counter = Counter(colors) Counter({'blue': 3, 'red': 2, 'yellow': 1}) >>> counter.most_common()[0][0] 'blue' ```
Set --- ```python <set> = set() <set>.add(<el>) <set>.update(<collection>) <set> |= {<el>} <set> |= <set> ```
```python <set> = <set>.union(<coll.>) # Or: <set> | <set> <set> = <set>.intersection(<coll.>) # Or: <set> & <set> <set> = <set>.difference(<coll.>) # Or: <set> - <set> <set> = <set>.symmetric_difference(<coll.>) # Or: <set> ^ <set> <bool> = <set>.issubset(<coll.>) # Or: <set> <= <set> <bool> = <set>.issuperset(<coll.>) # Or: <set> >= <set> ```
```python <set>.remove(<el>) # Throws error. <set>.discard(<el>) # Doesn't throw error. ```
### Frozenset
#### Is hashable and can be used as a key in dictionary.
```python <frozenset> = frozenset(<collection>) ```
Range ----- ```python range(to_exclusive) range(from_inclusive, to_exclusive) range(from_inclusive, to_exclusive, step_size) range(from_inclusive, to_exclusive, -step_size) ```
```python from_inclusive = <range>.start to_exclusive = <range>.stop ```
Enumerate --------- ```python for i, el in enumerate(<collection> [, i_start]): ... ```
Named Tuple ----------- ```python >>> Point = collections.namedtuple('Point', 'x y') >>> p = Point(1, y=2) Point(x=1, y=2) >>> p[0] 1 >>> p.x 1 >>> getattr(p, 'y') 2 >>> p._fields # Or: Point._fields ('x', 'y') ```
Iterator -------- ```python <iter> = iter(<collection>) <iter> = iter(<function>, to_exclusive) ```
#### Skips first element:
```python next(<iter>) for element in <iter>: ... ```
#### Reads input until it reaches an empty line:
```python for line in iter(input, ''): ... ```
#### Same, but prints a message every time:
```python from functools import partial for line in iter(partial(input, 'Please enter value: '), ''): ... ```
Generator --------- **Convenient way to implement the iterator protocol.**
```python def step(start, step_size): while True: yield start start += step_size ```
```python >>> stepper = step(10, 2) >>> next(stepper), next(stepper), next(stepper) (10, 12, 14) ```
Type ---- ```python <type> = type(<el>) # <class 'int'> / <class 'str'> / ... ```
```python from numbers import Number, Integral, Real, Rational, Complex <bool> = isinstance(<el>, Number) ```
```python <bool> = callable(<el>) ```
String ------ ```python <str> = <str>.strip() # Strips all whitespace characters. <str> = <str>.strip('<chars>') # Strips all passed characters. ```
```python <list> = <str>.split() # Splits on any whitespace character. <list> = <str>.split(sep=None, maxsplit=-1) # Splits on 'sep' str at most 'maxsplit' times. <str> = <str>.join(<list>) # Joins elements using string as separator. ```
```python <str> = <str>.replace(old_str, new_str) <bool> = <str>.startswith(<sub_str>) # Pass tuple of strings for multiple options. <bool> = <str>.endswith(<sub_str>) # Pass tuple of strings for multiple options. <int> = <str>.index(<sub_str>) # Returns first index of a substring. <bool> = <str>.isnumeric() # True if str contains only numeric characters. <list> = textwrap.wrap(<str>, width) # Nicely breaks string into lines. ```
### Char
```python <str> = chr(<int>) # Converts int to unicode char. <int> = ord(<str>) # Converts unicode char to int. ```
```python >>> ord('0'), ord('9') (48, 57) >>> ord('A'), ord('Z') (65, 90) >>> ord('a'), ord('z') (97, 122) ```
Regex ----- ```python import re <str> = re.sub(<regex>, new, text, count=0) # Substitutes all occurrences. <list> = re.findall(<regex>, text) # Returns all occurrences. <list> = re.split(<regex>, text, maxsplit=0) # Use brackets in regex to keep the matches. <Match> = re.search(<regex>, text) # Searches for first occurrence of pattern. <Match> = re.match(<regex>, text) # Searches only at the beginning of the text. <iter> = re.finditer(<regex>, text) # Returns all occurrences as match objects. ```
* **Parameter `'flags=re.IGNORECASE'` can be used with all functions.** * **Parameter `'flags=re.DOTALL'` makes dot also accept newline.** * **Use `r'\1'` or `'\\\\1'` for backreference.** * **Use `'?'` to make operators non-greedy.**
### Match Object
```python <str> = <Match>.group() # Whole match. <str> = <Match>.group(1) # Part in first bracket. <tuple> = <Match>.groups() # All bracketed parts. <int> = <Match>.start() # Start index of a match. <int> = <Match>.end() # Exclusive end index of a match. ```
### Special Sequences
**Use capital letter for negation.** ```python '\d' == '[0-9]' # Digit '\s' == '[ \t\n\r\f\v]' # Whitespace '\w' == '[a-zA-Z0-9_]' # Alphanumeric ```
Format ------ ```python <str> = f'{<el_1>}, {<el_2>}' <str> = '{}, {}'.format(<el_1>, <el_2>) ```
```python >>> Person = namedtuple('Person', 'name height') >>> person = Person('Jean-Luc', 187) >>> f'{person.height:10}' ' 187' >>> '{p.height:10}'.format(p=person) ' 187' ```
### General Options
```python {<el>:<10} # '<el> ' {<el>:>10} # ' <el>' {<el>:^10} # ' <el> ' {<el>:->10} # '------<el>' {<el>:>0} # '<el>' ```
### String Options
**`'!r'` calls object's repr() method, instead of format(), to get a string.** ```python {'abcde'!r:<10} # "'abcde' " ```
```python {'abcde':.3} # 'abc' {'abcde':10.3} # 'abc ' ```
### Number Options
```python {1.23456:.3f} # '1.235' {1.23456:10.3f} # ' 1.235' ```
```python { 123456:10,} # ' 123,456' { 123456:10_} # ' 123_456' { 123456:+10} # ' +123456' {-123456:=10} # '- 123456' { 123456: } # ' 123456' {-123456: } # '-123456' ```
```python {65:c} # 'A' {3:08b} # '00000011' -> Binary with leading zeros. {3:0<8b} # '11000000' -> Binary with trailing zeros. ```
#### Float presentation types:
* **`'f'` - Fixed point: `.<precision>f`** * **`'%'` - Percent: `.<precision>%`** * **`'e'` - Exponent**
#### Integer presentation types:
* **`'c'` - character** * **`'b'` - binary** * **`'x'` - hex** * **`'X'` - HEX**
Numbers ------- ### Basic Functions
```python <num> = pow(<num>, <num>) # Or: <num> ** <num> <real> = abs(<num>) <real> = round(<real> [, ndigits]) ```
### Constants
```python from math import e, pi ```
### Trigonometry
```python from math import cos, acos, sin, asin, tan, atan, degrees, radians ```
### Logarithm
```python from math import log, log10, log2 <float> = log(<real> [, base]) # Base e, if not specified. ```
### Infinity, nan
```python from math import inf, nan, isinf, isnan ```
#### Or:
```python float('inf'), float('nan') ```
### Random
```python from random import random, randint, choice, shuffle <float> = random() <int> = randint(from_inclusive, to_inclusive) <el> = choice(<list>) shuffle(<list>) ```
Datetime -------- ```python from datetime import datetime, strptime now = datetime.now() now.month # 3 now.strftime('%Y%m%d') # '20180315' now.strftime('%Y%m%d%H%M%S') # '20180315002834' <datetime> = strptime('2015-05-12 00:39', '%Y-%m-%d %H:%M') ```
Arguments --------- **`'*'` is the splat operator, that takes a list as input, and expands it into actual positional arguments in the function call.**
```python args = (1, 2) kwargs = {'x': 3, 'y': 4, 'z': 5} func(*args, **kwargs) ```
#### Is the same as:
```python func(1, 2, x=3, y=4, z=5) ```
#### Splat operator can also be used in function declarations:
```python def add(*a): return sum(a) ```
```python >>> add(1, 2, 3) 6 ```
#### And in few other places:
```python >>> a = (1, 2, 3) >>> [*a] [1, 2, 3] ```
```python >>> head, *body, tail = [1, 2, 3, 4] >>> body [2, 3] ```
Inline ------ ### Lambda
```python lambda: <return_value> lambda <argument_1>, <argument_2>: <return_value> ```
### Comprehension
```python <list> = [i+1 for i in range(10)] # [1, 2, ..., 10] <set> = {i for i in range(10) if i > 5} # {6, 7, 8, 9} <dict> = {i: i*2 for i in range(10)} # {0: 0, 1: 2, ..., 9: 18} <iter> = (i+5 for i in range(10)) # (5, 6, ..., 14) ```
```python out = [i+j for i in range(10) for j in range(10)] ```
#### Is the same as:
```python out = [] for i in range(10): for j in range(10): out.append(i+j) ```
### Map, Filter, Reduce
```python from functools import reduce <iter> = map(lambda x: x + 1, range(10)) # (1, 2, ..., 10) <iter> = filter(lambda x: x > 5, range(10)) # (6, 7, 8, 9) <int> = reduce(lambda out, x: out + x, range(10)) # 45 ```
### Any, All
```python <bool> = any(<collection>) # False if empty. <bool> = all(el[1] for el in <collection>) # True if empty. ```
### If - Else
```python <expression_if_true> if <condition> else <expression_if_false> ```
```python >>> [a if a else 'zero' for a in (0, 1, 0, 3)] ['zero', 1, 'zero', 3] ```
### Namedtuple, Enum, Class
```python from collections import namedtuple Point = namedtuple('Point', 'x y') point = Point(0, 0) ```
```python from enum import Enum Direction = Enum('Direction', 'n e s w') Cutlery = Enum('Cutlery', {'fork': 1, 'knife': 2, 'spoon': 3}) ```
```python # Warning: Objects will share the objects that are initialized in the dictionary!
Creature = type('Creature', (), {'p': Point(0, 0), 'd': Direction.n}) creature = Creature() ```
Closure ------- **We have a closure in Python when:** * **A nested function references a value of its enclosing function and then** * **the enclosing function returns the nested function.**
```python def get_multiplier(a): def out(b): return a * b return out ```
```python >>> multiply_by_3 = get_multiplier(3) >>> multiply_by_3(10) 30 ```
* **If multiple nested functions within enclosing function reference the same value, that value gets shared.** * **To dynamicaly acces functions first free variable use `'<function>.__closure__[0].cell_contents'`.**
#### Or:
```python from functools import partial <function> = partial(<function>, <argument_1> [, <argument_2>, ...]) ```
```python >>> multiply_by_3 = partial(operator.mul, 3) >>> multiply_by_3(10) 30 ```
### Nonlocal
**If variable is assigned to anywhere in the scope, it is regarded as a local variable, unless it is declared as global or nonlocal.**
```python def get_counter(): a = 0 def out(): nonlocal a a += 1 return a return out ```
```python >>> counter = get_counter() >>> counter(), counter(), counter() (1, 2, 3) ```
Decorator --------- **A decorator takes a function, adds some functionality and returns it.**
```python @decorator_name def function_that_gets_passed_to_decorator(): ... ```
### Debugger Example
**Decorator that prints function's name every time it gets called.**
```python from functools import wraps
def debug(func): @wraps(func) def out(*args, **kwargs): print(func.__name__) return func(*args, **kwargs) return out
@debug def add(x, y): return x + y ``` * **Wraps is a helper decorator that copies metadata of function add() to function out().** * **Without it `'add.__name__'` would return `'out'`.**
### LRU Cache
**Decorator that caches function's return values. All function's arguments must be hashable.**
```python from functools import lru_cache
@lru_cache(maxsize=None) def fib(n): return n if n < 2 else fib(n-1) + fib(n-2) ```
```python >>> [fib(n) for n in range(10)] [0, 1, 1, 2, 3, 5, 8, 13, 21, 34] >>> fib.cache_info() CacheInfo(hits=16, misses=10, maxsize=None, currsize=10) ```
### Parametrized Decorator
```python from functools import wraps
def debug(print_result=False): def decorator(func): @wraps(func) def out(*args, **kwargs): result = func(*args, **kwargs) print(func.__name__, result if print_result else '') return result return out return decorator
@debug(print_result=True) def add(x, y): return x + y ```
Class ----- ```python class <name>: def __init__(self, a): self.a = a def __repr__(self): class_name = type(self).__name__ return f'{class_name}({self.a!r})' def __str__(self): return str(self.a)
@classmethod def get_class_name(cls): return cls.__name__ ```
### Constructor Overloading
```python class <name>: def __init__(self, a=None): self.a = a ```
### Inheritance
```python class Person: def __init__(self, name, age): self.name = name self.age = age
class Employee(Person): def __init__(self, name, age, staff_num): super().__init__(name, age) self.staff_num = staff_num ```
### Comparable
* **If eq() method is not overridden, it returns `'id(self) == id(other)'`, which is the same as `'self is other'`.** * **That means all objects compare not equal by default.**
```python class MyComparable: def __init__(self, a): self.a = a def __eq__(self, other): if isinstance(other, type(self)): return self.a == other.a return False ```
### Hashable
* **Hashable object needs both hash() and eq() methods and it's hash value should never change.** * **Hashable objects that compare equal must have the same hash value, meaning default hash() that returns `'id(self)'` will not do.** * **That is why Python automatically makes classes unhashable if you only implement eq().**
```python class MyHashable: def __init__(self, a): self.__a = copy.deepcopy(a) @property def a(self): return self.__a def __eq__(self, other): if isinstance(other, type(self)): return self.a == other.a return False def __hash__(self): return hash(self.a) ```
### Sequence
* **Methods do not depend on each other, so they can be skipped if not needed.** * **Any object with defined getitem() is considered iterable, even if it lacks iter().** ```python class MySequence: def __init__(self, a): self.a = a def __len__(self): return len(self.a) def __getitem__(self, i): return self.a[i] def __iter__(self): for el in self.a: yield el ```
### Callable
```python class Counter: def __init__(self): self.a = 0 def __call__(self): self.a += 1 return self.a ```
### Copy
```python from copy import copy, deepcopy <object> = copy(<object>) <object> = deepcopy(<object>) ```
Enum ---- ```python from enum import Enum, auto
class <enum_name>(Enum): <member_name_1> = <value_1> <member_name_2> = <value_2_a>, <value_2_b> <member_name_3> = auto()
@classmethod def get_member_names(cls): return [a.name for a in cls.__members__.values()] ```
```python <member> = <enum>.<member_name> <member> = <enum>['<member_name>'] <member> = <enum>(<value>) name = <member>.name value = <member>.value ```
```python list_of_members = list(<enum>) member_names = [a.name for a in <enum>] member_values = [a.value for a in <enum>] random_member = random.choice(list(<enum>)) ```
### Inline
```python Cutlery = Enum('Cutlery', ['fork', 'knife', 'spoon']) Cutlery = Enum('Cutlery', 'fork knife spoon') Cutlery = Enum('Cutlery', {'fork': 1, 'knife': 2, 'spoon': 3}) ```
#### Functions can not be values, so they must be wrapped:
```python from functools import partial LogicOp = Enum('LogicOp', {'AND': partial(lambda l, r: l and r), 'OR' : partial(lambda l, r: l or r)}) ```
Exceptions ---------- ```python while True: try: x = int(input('Please enter a number: ')) except ValueError: print('Oops! That was no valid number. Try again...') else: print('Thank you.') break ```
#### Raising exception:
```python raise ValueError('A very specific message!') ```
### Finally
```python >>> try: ... raise KeyboardInterrupt ... finally: ... print('Goodbye, world!') Goodbye, world! Traceback (most recent call last): File "<stdin>", line 2, in <module> KeyboardInterrupt ```
System ------ ### Command Line Arguments
```python import sys script_name = sys.argv[0] arguments = sys.argv[1:] ```
### Print Function
```python print(<el_1>, ..., sep=' ', end='\n', file=sys.stdout, flush=False) ```
* **Use `'file=sys.stderr'` for errors.**
#### Pretty print:
```python >>> from pprint import pprint >>> pprint(dir()) ['__annotations__', '__builtins__', '__doc__', ...] ```
### Input Function
* **Reads a line from user input or pipe if present.** * **The trailing newline gets stripped.** * **The prompt string is printed to standard output before reading input.**
```python <str> = input(prompt=None) ```
#### Prints lines until EOF:
```python while True: try: print(input()) except EOFError: break ```
### Open Function
**Opens file and returns a corresponding file object.**
```python <file> = open(<path>, mode='r', encoding=None) ```
#### Modes:
* **`'r'` - Read (default).** * **`'w'` - Write (truncate).** * **`'x'` - Write or fail if the file already exists.** * **`'a'` - Append.** * **`'w+'` - Read and write (truncate).** * **`'r+'` - Read and write from the beginning.** * **`'a+'` - Read and write from the end.** * **`'b'` - Binary mode.** * **`'t'` - Text mode (default).**
#### Read Text from File:
```python def read_file(filename): with open(filename, encoding='utf-8') as file: return file.readlines() ```
#### Write Text to File:
```python def write_to_file(filename, text): with open(filename, 'w', encoding='utf-8') as file: file.write(text) ```
### Path
```python from os import path, listdir <bool> = path.exists(<path>) <bool> = path.isfile(<path>) <bool> = path.isdir(<path>) <list> = listdir(<path>) ```
```python >>> from glob import glob >>> glob('../*.gif') ['1.gif', 'card.gif'] ```
### Command Execution
```python import os <str> = os.popen(<command>).read() ```
#### Or:
```python >>> import subprocess >>> a = subprocess.run(['ls', '-a'], stdout=subprocess.PIPE) >>> a.stdout b'.\n..\nfile1.txt\nfile2.txt\n' >>> a.returncode 0 ```
### Recursion Limit
```python >>> import sys >>> sys.getrecursionlimit() 1000 >>> sys.setrecursionlimit(5000) ```
JSON ---- ```python import json <str> = json.dumps(<object>, ensure_ascii=True, indent=None) <object> = json.loads(<str>) ```
#### To preserve order:
```python from collections import OrderedDict <object> = json.loads(<str>, object_pairs_hook=OrderedDict) ```
### Read File
```python def read_json_file(filename): with open(filename, encoding='utf-8') as file: return json.load(file) ```
### Write to File
```python def write_to_json_file(filename, an_object): with open(filename, 'w', encoding='utf-8') as file: json.dump(an_object, file, ensure_ascii=False, indent=2) ```
Pickle ------ ```python import pickle <bytes> = pickle.dumps(<object>) <object> = pickle.loads(<bytes>) ```
### Read Object from File
```python def read_pickle_file(filename): with open(filename, 'rb') as file: return pickle.load(file) ```
### Write Object to File
```python def write_to_pickle_file(filename, an_object): with open(filename, 'wb') as file: pickle.dump(an_object, file) ```
SQLite ------ ```python import sqlite3 db = sqlite3.connect(<filename>) ... db.close() ```
### Read
```python cursor = db.execute(<query>) if cursor: <tuple> = cursor.fetchone() # First row. <list> = cursor.fetchall() # Remaining rows. ```
### Write
```python db.execute(<query>) db.commit() ```
Bytes ----- **Bytes object is immutable sequence of single bytes. Mutable version is called bytearray.**
```python <bytes> = b'<str>' <int> = <bytes>[<index>] <bytes> = <bytes>[<slice>] <bytes> = b''.join(<coll_of_bytes>) ```
### Encode
```python <bytes> = <str>.encode(encoding='utf-8') <bytes> = <int>.to_bytes(length, byteorder='big|little', signed=False) <bytes> = bytes.fromhex(<hex>) ```
### Decode
```python <str> = <bytes>.decode('utf-8') <int> = int.from_bytes(<bytes>, byteorder='big|little', signed=False) <hex> = <bytes>.hex() ```
### Read Bytes from File
```python def read_bytes(filename): with open(filename, 'rb') as file: return file.read() ```
### Write Bytes to File
```python def write_bytes(filename, bytes_obj): with open(filename, 'wb') as file: file.write(bytes_obj) ```
Struct ------ * **Module that performs conversions between Python values and a C struct, represented as a Python bytes object.** * **Machine’s native type sizes and byte order are used by default.**
```python from struct import pack, unpack, calcsize <bytes> = pack('<format>', <value_1> [, <value_2>, ...]) <tuple> = unpack('<format>', <bytes>) ```
### Example
```python >>> pack('>hhl', 1, 2, 3) b'\x00\x01\x00\x02\x00\x00\x00\x03' >>> unpack('>hhl', b'\x00\x01\x00\x02\x00\x00\x00\x03') (1, 2, 3) >>> calcsize('>hhl') 8 ```
### Format
#### For standard sizes start format string with:
* **`'='` - native byte order** * **`'<'` - little-endian** * **`'>'` - big-endian**
#### Use capital letter for unsigned type. Standard size in brackets:
* **`'x'` - pad byte** * **`'c'` - char (1)** * **`'h'` - short (2)** * **`'i'` - int (4)** * **`'l'` - long (4)** * **`'q'` - long long (8)** * **`'f'` - float (4)** * **`'d'` - double (8)**
Array ----- **List that can only hold elements of predefined type. Available types are listed above.**
```python from array import array <array> = array(<typecode> [, <collection>]) ```
Deque ----- **A thread-safe list with efficient appends and pops from either side. Pronounced “deck”.**
```python from collections import deque <deque> = deque(<collection>, maxlen=None) ```
```python <deque>.appendleft(<el>) <deque>.extendleft(<collection>) # Collection gets reversed. <el> = <deque>.popleft() <deque>.rotate(n=1) # Rotates elements to the right. ```
Threading --------- ```python from threading import Thread, RLock ```
### Thread
```python thread = Thread(target=<function>, args=(<first_arg>, )) thread.start() ... thread.join() ```
### Lock
```python lock = RLock() lock.acquire() ... lock.release() ```
Hashlib ------- ```python >>> import hashlib >>> hashlib.md5(<str>.encode()).hexdigest() '33d0eba106da4d3ebca17fcd3f4c3d77' ```
Itertools --------- * **Every function returns an iterator and can accept any collection and/or iterator.** * **If you want to print the iterator, you need to pass it to the list() function!**
```python from itertools import * ```
### Combinatoric iterators
```python >>> combinations('abc', 2) [('a', 'b'), ('a', 'c'), ('b', 'c')]
>>> combinations_with_replacement('abc', 2) [('a', 'a'), ('a', 'b'), ('a', 'c'), ('b', 'b'), ('b', 'c'), ('c', 'c')]
>>> permutations('abc', 2) [('a', 'b'), ('a', 'c'), ('b', 'a'), ('b', 'c'), ('c', 'a'), ('c', 'b')]
>>> product('ab', [1, 2]) [('a', 1), ('a', 2), ('b', 1), ('b', 2)]
>>> product([0, 1], repeat=3) [(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)] ```
### Infinite iterators
```python >>> i = count(5, 2) >>> next(i), next(i), next(i) (5, 7, 9)
>>> a = cycle('abc') >>> [next(a) for _ in range(10)] ['a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c', 'a']
>>> repeat(10, 3) [10, 10, 10] ```
### Iterators
```python >>> chain([1, 2], range(3, 5)) [1, 2, 3, 4]
>>> compress('abc', [True, 0, 1]) ['a', 'c']
>>> # islice(<collection>, from_inclusive, to_exclusive) >>> islice([1, 2, 3], 1, None) [2, 3]
>>> people = [{'id': 1, 'name': 'Bob'}, {'id': 2, 'name': 'Bob'}, {'id': 3, 'name': 'Peter'}] >>> groups = groupby(people, key=lambda a: a['name']) >>> {name: list(group) for name, group in groups} {'Bob': [{'id': 1, 'name': 'Bob'}, {'id': 2, 'name': 'Bob'}], 'Peter': [{'id': 3, 'name': 'Peter'}]} ```
Introspection and Metaprograming -------------------------------- **Inspecting code at runtime and code that generates code. You can:** * **Look at the attributes** * **Set new attributes** * **Create functions dynamically** * **Traverse the parent classes** * **Change values in the class**
### Variables
```python <list> = dir() # Names of in-scope variables. <dict> = locals() # Dict of local variables. Also vars(). <dict> = globals() # Dict of global variables. ```
### Attributes
```python class Z: def __init__(self): self.a = 'abcde' self.b = 12345 ```
```python >>> z = Z()
>>> vars(z) {'a': 'abcde', 'b': 12345}
>>> getattr(z, 'a') 'abcde'
>>> hasattr(z, 'c') False
>>> setattr(z, 'c', 10) ```
### Parameters
```python from inspect import signature sig = signature(<function>) no_of_params = len(sig.parameters) param_names = list(sig.parameters.keys()) ```
### Type
**Type is the root class. If only passed the object it returns it's type. Otherwise it creates a new class (and not the instance!).**
```python type(<class_name>, <parents_tuple>, <attributes_dict>) ```
```python >>> Z = type('Z', (), {'a': 'abcde', 'b': 12345}) >>> z = Z() ```
### Meta Class
**Class that creates class.**
```python def my_meta_class(name, parents, attrs): attrs['a'] = 'abcde' return type(name, parents, attrs) ```
#### Or:
```python class MyMetaClass(type): def __new__(cls, name, parents, attrs): attrs['a'] = 'abcde' return type.__new__(cls, name, parents, attrs) ```
### Metaclass Attribute
**When class is created it checks if it has metaclass defined. If not, it recursively checks if any of his parents has it defined and eventually comes to type.**
```python class MyClass(metaclass=MyMetaClass): def __init__(self): self.b = 12345 ```
Operator -------- ```python from operator import add, sub, mul, truediv, floordiv, mod, pow, neg, abs, \ eq, ne, lt, le, gt, ge, \ not_, and_, or_, \ itemgetter, attrgetter, methodcaller ```
```python import operator as op product_of_elems = functools.reduce(op.mul, <list>) sorted_by_second = sorted(<list>, key=op.itemgetter(1)) sorted_by_both = sorted(<list>, key=op.itemgetter(1, 0)) LogicOp = enum.Enum('LogicOp', {'AND': op.and_, 'OR' : op.or_}) last_el = op.methodcaller('pop')(<list>) ```
Eval ---- ### Basic
```python >>> from ast import literal_eval >>> literal_eval('1 + 2') 3 >>> literal_eval('[1, 2, 3]') [1, 2, 3] >>> ast.literal_eval('abs(1)') ValueError: malformed node or string ```
### Using Abstract Syntax Trees
```python import ast from ast import Num, BinOp, UnaryOp import operator as op
legal_operators = {ast.Add: op.add, ast.Sub: op.sub, ast.Mult: op.mul, ast.Div: op.truediv, ast.Pow: op.pow, ast.BitXor: op.xor, ast.USub: op.neg}
def evaluate(expression): root = ast.parse(expression, mode='eval') return eval_node(root.body)
def eval_node(node): node_type = type(node) if node_type == Num: return node.n if node_type not in [BinOp, UnaryOp]: raise TypeError(node) operator_type = type(node.op) if operator_type not in legal_operators: raise TypeError(f'Illegal operator {node.op}') operator = legal_operators[operator_type] if node_type == BinOp: left, right = eval_node(node.left), eval_node(node.right) return operator(left, right) elif node_type == UnaryOp: operand = eval_node(node.operand) return operator(operand) ```
```python >>> evaluate('2 ^ 6') 4 >>> evaluate('2 ** 6') 64 >>> evaluate('1 + 2 * 3 ** (4 ^ 5) / (6 + -7)') -5.0 ```
Coroutine --------- * **Similar to Generator, but Generator pulls data through the pipe with iteration, while Coroutine pushes data into the pipeline with send().** * **Coroutines provide more powerful data routing possibilities than iterators.** * **If you built a collection of simple data processing components, you can glue them together into complex arrangements of pipes, branches, merging, etc.**
### Helper Decorator
* **All coroutines must be "primed" by first calling next().** * **Remembering to call next() is easy to forget.** * **Solved by wrapping coroutines with a decorator:**
```python def coroutine(func): def out(*args, **kwargs): cr = func(*args, **kwargs) next(cr) return cr return out ```
### Pipeline Example
```python def reader(target): for i in range(10): target.send(i) target.close()
@coroutine def adder(target): while True: item = (yield) target.send(item + 100)
@coroutine def printer(): while True: item = (yield) print(item)
reader(adder(printer())) # 100, 101, ..., 109 ```
<br><br>
Libraries =========
Progress Bar ------------ ```python # $ pip3 install tqdm
from tqdm import tqdm from time import sleep for i in tqdm([1, 2, 3]): sleep(0.2) for i in tqdm(range(100)): sleep(0.02) ```
Plot ---- ```python # $ pip3 install matplotlib
from matplotlib import pyplot pyplot.plot(<data_1> [, <data_2>, ...]) pyplot.savefig(<filename>, transparent=True) pyplot.show() ```
Argparse -------- ```python from argparse import ArgumentParser desc = 'calculate X to the power of Y' parser = ArgumentParser(description=desc) group = parser.add_mutually_exclusive_group() group.add_argument('-v', '--verbose', action='store_true') group.add_argument('-q', '--quiet', action='store_true') parser.add_argument('x', type=int, help='the base') parser.add_argument('y', type=int, help='the exponent') args = parser.parse_args() answer = args.x ** args.y
if args.quiet: print(answer) elif args.verbose: print(f'{args.x} to the power {args.y} equals {answer}') else: print(f'{args.x}^{args.y} == {answer}') ```
Table ----- #### Prints CSV file as ASCII table:
```python # $ pip3 install tabulate
import csv from tabulate import tabulate with open(<filename>, encoding='utf-8') as file: lines = csv.reader(file, delimiter=';') headers = [header.title() for header in next(lines)] table = tabulate(lines, headers) print(table) ```
Curses ------ ```python # $ pip3 install curses
from curses import wrapper
def main(): wrapper(draw)
def draw(screen): screen.clear() screen.addstr(0, 0, 'Press ESC to quit.') while screen.getch() != 27: pass
def get_border(screen): from collections import namedtuple P = namedtuple('P', 'x y') height, width = screen.getmaxyx() return P(width - 1, height - 1) ```
Image ----- #### Creates PNG image of greyscale gradient:
```python # $ pip3 install pillow
from PIL import Image width = 100 height = 100 size = width * height pixels = [255 * i/size for i in range(size)]
img = Image.new('L', (width, height), 'white') img.putdata(pixels) img.save('test.png') ```
### Modes
* **`'1'` - 1-bit pixels, black and white, stored with one pixel per byte.** * **`'L'` - 8-bit pixels, greyscale.** * **`'RGB'` - 3x8-bit pixels, true color.** * **`'RGBA'` - 4x8-bit pixels, true color with transparency mask.** * **`'HSV'` - 3x8-bit pixels, Hue, Saturation, Value color space.**
Audio ----- #### Saves a list of floats with values between -1 and 1 to a WAV file:
```python import wave, struct samples = [struct.pack('<h', int(a * 30000)) for a in <list>] wf = wave.open('test.wav', 'wb') wf.setnchannels(1) wf.setsampwidth(2) wf.setframerate(44100) wf.writeframes(b''.join(samples)) wf.close() ```
### Plays Popcorn
```python # pip3 install simpleaudio
import simpleaudio, math, struct from itertools import chain, repeat F = 44100 S1 = '71♪,69,,71♪,66,,62♪,66,,59♪,,,' S2 = '71♪,73,,74♪,73,,74,,71,,73♪,71,,73,,69,,71♪,69,,71,,67,,71♪,,,' get_pause = lambda seconds: repeat(0, int(seconds * F)) sin_f = lambda i, hz: math.sin(i * 2 * math.pi * hz / F) get_wave = lambda hz, seconds: (sin_f(i, hz) for i in range(int(seconds * F))) get_hz = lambda n: 8.176 * 2 ** (int(n) / 12) parse_n = lambda note: (get_hz(note[:2]), 0.25 if len(note) > 2 else 0.125) get_note = lambda note: get_wave(*parse_n(note)) if note else get_pause(0.125) samples_f = chain.from_iterable(get_note(n) for n in f'{S1}{S1}{S2}'.split(',')) samples_b = b''.join(struct.pack('<h', int(a * 30000)) for a in samples_f) simpleaudio.play_buffer(samples_b, 1, 2, F) ```
Url --- ```python from urllib.parse import quote, quote_plus, unquote, unquote_plus ```
### Encode
```python >>> quote("Can't be in URL!") 'Can%27t%20be%20in%20URL%21' >>> quote_plus("Can't be in URL!") 'Can%27t+be+in+URL%21' ```
### Decode
```python >>> unquote('Can%27t+be+in+URL%21') "Can't+be+in+URL!" >>> unquote_plus('Can%27t+be+in+URL%21') "Can't be in URL!" ```
Scraping -------- ```python # $ pip3 install requests beautifulsoup4
>>> import requests >>> from bs4 import BeautifulSoup >>> url = 'https://en.wikipedia.org/wiki/Python_(programming_language)' >>> page = requests.get(url) >>> doc = BeautifulSoup(page.text, 'html.parser') >>> table = doc.find('table', class_='infobox vevent') >>> rows = table.find_all('tr') >>> link = rows[11].find('a')['href'] >>> ver = rows[6].find('div').text.split()[0] >>> link, ver ('https://www.python.org/', '3.7.2') ```
Web --- ```python # $ pip3 install bottle
from bottle import run, route, post, template, request, response import json ```
### Run
```python run(host='localhost', port=8080) run(host='0.0.0.0', port=80, server='cherrypy') ```
### Static Request
```python @route('/img/<image>') def send_image(image): return static_file(image, 'images/', mimetype='image/png') ```
### Dynamic Request
```python @route('/<sport>') def send_page(sport): return template('<h1>{{title}}</h1>', title=sport) ```
### REST Request
```python @post('/odds/<sport>') def odds_handler(sport): team = request.forms.get('team') home_odds, away_odds = 2.44, 3.29 response.headers['Content-Type'] = 'application/json' response.headers['Cache-Control'] = 'no-cache' return json.dumps([team, home_odds, away_odds]) ```
#### Test:
```python # $ pip3 install requests
>>> import requests >>> url = 'http://localhost:8080/odds/football' >>> data = {'team': 'arsenal f.c.'} >>> response = requests.post(url, data=data) >>> response.json() ['arsenal f.c.', 2.44, 3.29] ```
Profile ------- ### Basic
```python from time import time start_time = time() # Seconds since Epoch. ... duration = time() - start_time ```
### High Performance
```python from time import perf_counter as pc start_time = pc() # Seconds since restart. ... duration = pc() - start_time ```
### Timing a Snippet
```python from timeit import timeit timeit('"-".join(str(a) for a in range(100))', number=10000, globals=globals(), setup='pass') ```
### Line Profiler
```python # $ pip3 install line_profiler
@profile def main(): a = [*range(10000)] b = {*range(10000)} main() ```
#### Usage:
```text $ kernprof -lv test.py Line # Hits Time Per Hit % Time Line Contents ============================================================== 1 @profile 2 def main(): 3 1 1128.0 1128.0 27.4 a = [*range(10000)] 4 1 2994.0 2994.0 72.6 b = {*range(10000)} ```
### Call Graph
#### Generates a PNG image of call graph with highlighted bottlenecks:
```python # $ pip3 install pycallgraph
from pycallgraph import output, PyCallGraph from datetime import datetime time_str = datetime.now().strftime('%Y%m%d%H%M%S') filename = f'profile-{time_str}.png' drawer = output.GraphvizOutput(output_file=filename) with PyCallGraph(output=drawer): <code_to_be_profiled> ```
NumPy ----- **Array manipulation mini language. Can run up to 100 times faster than equivalent Python code.**
```python # $ pip3 install numpy
import numpy as np ```
```python <array> = np.array(<list>) <array> = np.arange(from_inclusive, to_exclusive, step_size) <array> = np.ones(<shape>) <array> = np.random.randint(from_inclusive, to_exclusive, <shape>) ```
```python <array>.shape = <shape> <view> = <array>.reshape(<shape>) <view> = np.broadcast_to(<array>, <shape>) ```
```python <array> = <array>.sum(<axis>) indexes = <array>.argmin(<axis>) ```
* **Shape is a tuple of dimension sizes.** * **Axis is an index of dimension that gets collapsed.**
### Indexing
```bash <el> = <2d_array>[0, 0] # First element. <1d_view> = <2d_array>[0] # First row. <1d_view> = <2d_array>[:, 0] # First column. Also [..., 0]. <3d_view> = <2d_array>[None, :, :] # Expanded by dimension of size 1. ```
```bash <1d_array> = <2d_array>[<1d_row_indexes>, <1d_column_indexes>] <2d_array> = <2d_array>[<2d_row_indexes>, <2d_column_indexes>] ```
```bash <2d_bools> = <2d_array> > 0 <1d_array> = <2d_array>[<2d_bools>] ```
* **If row and column indexes differ in shape, they are combined with broadcasting.**
### Broadcasting
**Broadcasting is a set of rules by which NumPy functions operate on arrays of different sizes and/or dimensions.**
```python left = [[0.1], [0.6], [0.8]] # Shape: (3, 1) right = [ 0.1 , 0.6 , 0.8 ] # Shape: (3) ```
#### 1. If array shapes differ, left-pad the smaller shape with ones:
```python left = [[0.1], [0.6], [0.8]] # Shape: (3, 1) right = [[0.1 , 0.6 , 0.8]] # Shape: (1, 3) <- ! ```
#### 2. If any dimensions differ in size, expand the ones that have size 1 by duplicating their elements:
```python left = [[0.1, 0.1, 0.1], [0.6, 0.6, 0.6], [0.8, 0.8, 0.8]] # Shape: (3, 3) <- ! right = [[0.1, 0.6, 0.8], [0.1, 0.6, 0.8], [0.1, 0.6, 0.8]] # Shape: (3, 3) <- ! ```
#### 3. If neither non-matching dimension has size 1, rise an error.
### Example
#### For each point returns index of its nearest point (`[0.1, 0.6, 0.8] => [1, 2, 1]`):
```python >>> points = np.array([0.1, 0.6, 0.8]) [ 0.1, 0.6, 0.8] >>> wrapped_points = points.reshape(3, 1) [[ 0.1], [ 0.6], [ 0.8]] >>> distances = wrapped_points - points [[ 0. , -0.5, -0.7], [ 0.5, 0. , -0.2], [ 0.7, 0.2, 0. ]] >>> distances = np.abs(distances) [[ 0. , 0.5, 0.7], [ 0.5, 0. , 0.2], [ 0.7, 0.2, 0. ]] >>> i = np.arange(3) [0, 1, 2] >>> distances[i, i] = np.inf [[ inf, 0.5, 0.7], [ 0.5, inf, 0.2], [ 0.7, 0.2, inf]] >>> distances.argmin(1) [1, 2, 1] ```
Basic Script Template --------------------- ```python #!/usr/bin/env python3
# # Usage: .py
#
from collections import namedtuple from enum import Enum import re import sys
def main(): pass
###
## UTIL
#
def read_file(filename): with open(filename, encoding='utf-8') as file: return file.readlines()
if __name__ == '__main__': main()
```
|