You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

736 lines
22 KiB

#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <locale.h>
#include <netdb.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <time.h>
#include <unistd.h>
#include <assert.h>
#include "local.h"
#include "socks5.h"
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifndef EAGAIN
#define EAGAIN EWOULDBLOCK
#endif
#ifndef EWOULDBLOCK
#define EWOULDBLOCK EAGAIN
#endif
#define min(a,b) (((a)<(b))?(a):(b))
static char *_server;
static char *_remote_port;
static int _timeout;
int setnonblocking(int fd) {
int flags;
if (-1 ==(flags = fcntl(fd, F_GETFL, 0)))
flags = 0;
return fcntl(fd, F_SETFL, flags | O_NONBLOCK);
}
int create_and_bind(const char *port) {
struct addrinfo hints;
struct addrinfo *result, *rp;
int s, listen_sock;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC; /* Return IPv4 and IPv6 choices */
hints.ai_socktype = SOCK_STREAM; /* We want a TCP socket */
s = getaddrinfo("0.0.0.0", port, &hints, &result);
if (s != 0) {
LOGD("getaddrinfo: %s\n", gai_strerror(s));
return -1;
}
for (rp = result; rp != NULL; rp = rp->ai_next) {
listen_sock = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
if (listen_sock == -1)
continue;
int opt = 1;
int err = setsockopt(listen_sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
if (err) {
perror("setsocket");
}
s = bind(listen_sock, rp->ai_addr, rp->ai_addrlen);
if (s == 0) {
/* We managed to bind successfully! */
break;
} else {
perror("bind");
}
close(listen_sock);
}
if (rp == NULL) {
LOGE("Could not bind\n");
return -1;
}
freeaddrinfo(result);
return listen_sock;
}
static void server_recv_cb (EV_P_ ev_io *w, int revents) {
struct server_ctx *server_recv_ctx = (struct server_ctx *)w;
struct server *server = server_recv_ctx->server;
struct remote *remote = server->remote;
if (remote == NULL) {
close_and_free_server(EV_A_ server);
return;
}
while (1) {
char *buf = remote->buf;
int *buf_len = &remote->buf_len;
if (server->stage != 5) {
buf = server->buf;
buf_len = &server->buf_len;
}
ssize_t r = recv(server->fd, buf, BUF_SIZE, 0);
if (r == 0) {
// connection closed
*buf_len = 0;
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
} else if(r < 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// no data
// continue to wait for recv
break;
} else {
perror("server recv");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
// local socks5 server
if (server->stage == 5) {
encrypt_ctx(remote->buf, r, server->e_ctx);
int w = send(remote->fd, remote->buf, r, 0);
if(w == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// no data, wait for send
remote->buf_len = r;
ev_io_stop(EV_A_ &server_recv_ctx->io);
ev_io_start(EV_A_ &remote->send_ctx->io);
break;
} else {
perror("send");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
} else if(w < r) {
char *pt = remote->buf;
char *et = pt + r;
while (pt + w < et) {
*pt = *(pt + w);
pt++;
}
remote->buf_len = r - w;
assert(remote->buf_len >= 0);
ev_io_stop(EV_A_ &server_recv_ctx->io);
ev_io_start(EV_A_ &remote->send_ctx->io);
break;
}
} else if (server->stage == 0) {
struct method_select_response response;
response.ver = SVERSION;
response.method = 0;
char *send_buf = (char *)&response;
send(server->fd, send_buf, sizeof(response), 0);
server->stage = 1;
return;
} else if (server->stage == 1) {
struct socks5_request *request = (struct socks5_request *)server->buf;
if (request->cmd != 1) {
LOGE("unsupported cmd: %d\n", request->cmd);
struct socks5_response response;
response.ver = SVERSION;
response.rep = CMD_NOT_SUPPORTED;
response.rsv = 0;
response.atyp = 1;
char *send_buf = (char *)&response;
send(server->fd, send_buf, 4, 0);
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
char addr_to_send[256];
unsigned char addr_len = 0;
addr_to_send[addr_len++] = request->atyp;
// get remote addr and port
if (request->atyp == 1) {
// IP V4
size_t in_addr_len = sizeof(struct in_addr);
memcpy(addr_to_send + addr_len, server->buf + 4, in_addr_len + 2);
addr_len += in_addr_len + 2;
} else if (request->atyp == 3) {
// Domain name
unsigned char name_len = *(unsigned char *)(server->buf + 4);
addr_to_send[addr_len++] = name_len;
memcpy(addr_to_send + addr_len, server->buf + 4 + 1, name_len);
addr_len += name_len;
// get port
addr_to_send[addr_len++] = *(unsigned char *)(server->buf + 4 + 1 + name_len);
addr_to_send[addr_len++] = *(unsigned char *)(server->buf + 4 + 1 + name_len + 1);
} else {
LOGE("unsupported addrtype: %d\n", request->atyp);
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
encrypt_ctx(addr_to_send, addr_len, server->e_ctx);
send(remote->fd, addr_to_send, addr_len, 0);
// Fake reply
struct socks5_response response;
response.ver = SVERSION;
response.rep = 0;
response.rsv = 0;
response.atyp = 1;
struct in_addr sin_addr;
inet_aton("0.0.0.0", &sin_addr);
memcpy(server->buf, &response, 4);
memcpy(server->buf + 4, &sin_addr, sizeof(struct in_addr));
*((unsigned short *)(server->buf + 4 + sizeof(struct in_addr)))
= (unsigned short) htons(atoi(_remote_port));
int reply_size = 4 + sizeof(struct in_addr) + sizeof(unsigned short);
int r = send(server->fd, server->buf, reply_size, 0);
if (r < reply_size) {
LOGE("header not complete sent\n");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
server->stage = 5;
}
}
}
static void server_send_cb (EV_P_ ev_io *w, int revents) {
struct server_ctx *server_send_ctx = (struct server_ctx *)w;
struct server *server = server_send_ctx->server;
struct remote *remote = server->remote;
if (server->buf_len == 0) {
// close and free
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
} else {
// has data to send
ssize_t r = send(server->fd, server->buf,
server->buf_len, 0);
if (r < 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
perror("send");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
return;
}
if (r < server->buf_len) {
// partly sent, move memory, wait for the next time to send
char *pt = server->buf;
char *et = pt + server->buf_len;
while (pt + r < et) {
*pt = *(pt + r);
pt++;
}
server->buf_len -= r;
assert(server->buf_len >= 0);
return;
} else {
// all sent out, wait for reading
ev_io_stop(EV_A_ &server_send_ctx->io);
if (remote != NULL) {
ev_io_start(EV_A_ &remote->recv_ctx->io);
} else {
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
}
}
static void remote_timeout_cb(EV_P_ ev_timer *watcher, int revents) {
struct remote_ctx *remote_ctx = (struct remote_ctx *) (((void*)watcher)
- sizeof(ev_io));
struct remote *remote = remote_ctx->remote;
struct server *server = remote->server;
LOGD("remote timeout\n");
ev_timer_stop(EV_A_ watcher);
if (server == NULL) {
close_and_free_remote(EV_A_ remote);
return;
}
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
static void remote_recv_cb (EV_P_ ev_io *w, int revents) {
struct remote_ctx *remote_recv_ctx = (struct remote_ctx *)w;
struct remote *remote = remote_recv_ctx->remote;
struct server *server = remote->server;
if (server == NULL) {
close_and_free_remote(EV_A_ remote);
return;
}
while (1) {
ssize_t r = recv(remote->fd, server->buf, BUF_SIZE, 0);
if (r == 0) {
// connection closed
server->buf_len = 0;
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
} else if(r < 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// no data
// continue to wait for recv
break;
} else {
perror("remote recv");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
decrypt_ctx(server->buf, r, server->d_ctx);
int w = send(server->fd, server->buf, r, 0);
if(w == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// no data, wait for send
server->buf_len = r;
ev_io_stop(EV_A_ &remote_recv_ctx->io);
ev_io_start(EV_A_ &server->send_ctx->io);
break;
} else {
perror("send");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
} else if(w < r) {
char *pt = server->buf;
char *et = pt + r;
while (pt + w < et) {
*pt = *(pt + w);
pt++;
}
server->buf_len = r - w;
assert(server->buf_len >= 0);
ev_io_stop(EV_A_ &remote_recv_ctx->io);
ev_io_start(EV_A_ &server->send_ctx->io);
break;
}
}
}
static void remote_send_cb (EV_P_ ev_io *w, int revents) {
struct remote_ctx *remote_send_ctx = (struct remote_ctx *)w;
struct remote *remote = remote_send_ctx->remote;
struct server *server = remote->server;
if (!remote_send_ctx->connected) {
struct sockaddr_storage addr;
socklen_t len = sizeof addr;
int r = getpeername(remote->fd, (struct sockaddr*)&addr, &len);
if (r == 0) {
remote_send_ctx->connected = 1;
ev_io_stop(EV_A_ &remote_send_ctx->io);
ev_timer_stop(EV_A_ &remote_send_ctx->watcher);
ev_io_start(EV_A_ &server->recv_ctx->io);
ev_io_start(EV_A_ &remote->recv_ctx->io);
return;
} else {
perror("getpeername");
// not connected
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
} else {
if (remote->buf_len == 0) {
// close and free
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
} else {
// has data to send
ssize_t r = send(remote->fd, remote->buf,
remote->buf_len, 0);
if (r < 0) {
if (errno != EAGAIN && errno != EWOULDBLOCK) {
perror("send");
// close and free
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
return;
}
if (r < remote->buf_len) {
// partly sent, move memory, wait for the next time to send
char *pt = remote->buf;
char *et = pt + remote->buf_len;
while (pt + r < et) {
*pt = *(pt + r);
pt++;
}
remote->buf_len -= r;
assert(remote->buf_len >= 0);
return;
} else {
// all sent out, wait for reading
ev_io_stop(EV_A_ &remote_send_ctx->io);
if (server != NULL) {
ev_io_start(EV_A_ &server->recv_ctx->io);
} else {
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
}
}
}
struct remote* new_remote(int fd) {
struct remote *remote;
remote = malloc(sizeof(struct remote));
remote->recv_ctx = malloc(sizeof(struct remote_ctx));
remote->send_ctx = malloc(sizeof(struct remote_ctx));
remote->fd = fd;
ev_io_init(&remote->recv_ctx->io, remote_recv_cb, fd, EV_READ);
ev_io_init(&remote->send_ctx->io, remote_send_cb, fd, EV_WRITE);
ev_timer_init(&remote->send_ctx->watcher, remote_timeout_cb, _timeout, 0);
remote->recv_ctx->remote = remote;
remote->recv_ctx->connected = 0;
remote->send_ctx->remote = remote;
remote->send_ctx->connected = 0;
remote->buf_len = 0;
return remote;
}
void free_remote(struct remote *remote) {
if (remote != NULL) {
if (remote->server != NULL) {
remote->server->remote = NULL;
}
free(remote->recv_ctx);
free(remote->send_ctx);
free(remote);
}
}
void close_and_free_remote(EV_P_ struct remote *remote) {
if (remote != NULL) {
ev_timer_stop(EV_A_ &remote->send_ctx->watcher);
ev_io_stop(EV_A_ &remote->send_ctx->io);
ev_io_stop(EV_A_ &remote->recv_ctx->io);
close(remote->fd);
free_remote(remote);
}
}
struct server* new_server(int fd) {
struct server *server;
server = malloc(sizeof(struct server));
server->recv_ctx = malloc(sizeof(struct server_ctx));
server->send_ctx = malloc(sizeof(struct server_ctx));
server->fd = fd;
ev_io_init(&server->recv_ctx->io, server_recv_cb, fd, EV_READ);
ev_io_init(&server->send_ctx->io, server_send_cb, fd, EV_WRITE);
server->recv_ctx->server = server;
server->recv_ctx->connected = 0;
server->send_ctx->server = server;
server->send_ctx->connected = 0;
server->stage = 0;
if (_method == RC4) {
server->e_ctx = malloc(sizeof(EVP_CIPHER_CTX));
server->d_ctx = malloc(sizeof(EVP_CIPHER_CTX));
enc_ctx_init(server->e_ctx, 1);
enc_ctx_init(server->d_ctx, 0);
} else {
server->e_ctx = NULL;
server->d_ctx = NULL;
}
server->buf_len = 0;
return server;
}
void free_server(struct server *server) {
if (server != NULL) {
if (server->remote != NULL) {
server->remote->server = NULL;
}
if (_method == RC4) {
EVP_CIPHER_CTX_cleanup(server->e_ctx);
EVP_CIPHER_CTX_cleanup(server->d_ctx);
free(server->e_ctx);
free(server->d_ctx);
}
free(server->recv_ctx);
free(server->send_ctx);
free(server);
}
}
void close_and_free_server(EV_P_ struct server *server) {
if (server != NULL) {
ev_io_stop(EV_A_ &server->send_ctx->io);
ev_io_stop(EV_A_ &server->recv_ctx->io);
close(server->fd);
free_server(server);
}
}
static void accept_cb (EV_P_ ev_io *w, int revents)
{
struct listen_ctx *listener = (struct listen_ctx *)w;
int serverfd;
while (1) {
serverfd = accept(listener->fd, NULL, NULL);
if (serverfd == -1) {
perror("accept");
break;
}
setnonblocking(serverfd);
struct server *server = new_server(serverfd);
struct addrinfo hints, *res;
int sockfd;
memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
int err = getaddrinfo(_server, _remote_port, &hints, &res);
if (err) {
perror("getaddrinfo");
close_and_free_server(EV_A_ server);
break;
}
sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
if (sockfd < 0) {
perror("socket");
close(sockfd);
close_and_free_server(EV_A_ server);
freeaddrinfo(res);
break;
}
struct timeval timeout;
timeout.tv_sec = _timeout;
timeout.tv_usec = 0;
err = setsockopt(sockfd, SOL_SOCKET,
SO_RCVTIMEO, (char *)&timeout, sizeof(timeout));
if (err) perror("setsockopt");
err = setsockopt(sockfd, SOL_SOCKET,
SO_SNDTIMEO, (char *)&timeout, sizeof(timeout));
if (err) perror("setsockopt");
setnonblocking(sockfd);
struct remote *remote = new_remote(sockfd);
server->remote = remote;
remote->server = server;
connect(sockfd, res->ai_addr, res->ai_addrlen);
freeaddrinfo(res);
// listen to remote connected event
ev_io_start(EV_A_ &remote->send_ctx->io);
ev_timer_start(EV_A_ &remote->send_ctx->watcher);
break;
}
}
static void print_usage() {
printf("usage: ss -s server_host -p server_port -l local_port\n");
printf(" -k password [-m encrypt_method] [-f pid_file]\n");
printf("\n");
printf("info:\n");
printf(" encrypt_method: table, rc4\n");
printf(" pid_file: valid path to the pid file\n");
}
int main (int argc, char **argv)
{
char *server = NULL;
char *remote_port = NULL;
char *port = NULL;
char *key = NULL;
char *timeout = "10";
char *method = NULL;
int c;
int f_flags = 0;
char *f_path = NULL;
opterr = 0;
while ((c = getopt (argc, argv, "f:s:p:l:k:t:m:")) != -1) {
switch (c) {
case 's':
server = optarg;
break;
case 'p':
remote_port = optarg;
break;
case 'l':
port = optarg;
break;
case 'k':
key = optarg;
break;
case 'f':
f_flags = 1;
f_path = optarg;
break;
case 't':
timeout = optarg;
break;
case 'm':
method = optarg;
break;
}
}
if (server == NULL || remote_port == NULL ||
port == NULL || key == NULL) {
print_usage();
exit(EXIT_FAILURE);
}
if (f_flags) {
if (f_path == NULL) {
print_usage();
exit(EXIT_FAILURE);
}
/* Our process ID and Session ID */
pid_t pid, sid;
/* Fork off the parent process */
pid = fork();
if (pid < 0) {
exit(EXIT_FAILURE);
}
/* If we got a good PID, then
we can exit the parent process. */
if (pid > 0) {
FILE *file = fopen(f_path, "w");
fprintf(file, "%d", pid);
fclose(file);
exit(EXIT_SUCCESS);
}
/* Change the file mode mask */
umask(0);
/* Open any logs here */
/* Create a new SID for the child process */
sid = setsid();
if (sid < 0) {
/* Log the failure */
exit(EXIT_FAILURE);
}
/* Change the current working directory */
if ((chdir("/")) < 0) {
/* Log the failure */
exit(EXIT_FAILURE);
}
/* Close out the standard file descriptors */
close(STDIN_FILENO);
close(STDOUT_FILENO);
close(STDERR_FILENO);
}
signal(SIGPIPE, SIG_IGN);
// init global variables
_server = strdup(server);
_remote_port = strdup(remote_port);
_timeout = atoi(timeout);
_method = TABLE;
if (method != NULL) {
if (strcmp(method, "rc4") == 0) {
_method = RC4;
}
}
LOGD("calculating ciphers %d\n", _method);
if (_method == RC4) {
enc_key_init(key);
} else {
get_table(key);
}
int listenfd;
listenfd = create_and_bind(port);
if (listenfd < 0) {
LOGE("bind() error..\n");
return 1;
}
if (listen(listenfd, SOMAXCONN) == -1) {
LOGE("listen() error.\n");
return 1;
}
LOGD("server listening at port %s\n", port);
setnonblocking(listenfd);
struct listen_ctx listen_ctx;
listen_ctx.fd = listenfd;
struct ev_loop *loop = ev_default_loop(0);
if (!loop) {
return 1;
}
ev_io_init (&listen_ctx.io, accept_cb, listenfd, EV_READ);
ev_io_start (loop, &listen_ctx.io);
ev_run (loop, 0);
return 0;
}