#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "local.h" #include "socks5.h" #ifdef HAVE_CONFIG_H #include "config.h" #endif #ifndef EAGAIN #define EAGAIN EWOULDBLOCK #endif #ifndef EWOULDBLOCK #define EWOULDBLOCK EAGAIN #endif #define min(a,b) (((a)<(b))?(a):(b)) static char *_server; static char *_remote_port; static int _timeout; int setnonblocking(int fd) { int flags; if (-1 ==(flags = fcntl(fd, F_GETFL, 0))) flags = 0; return fcntl(fd, F_SETFL, flags | O_NONBLOCK); } int create_and_bind(const char *port) { struct addrinfo hints; struct addrinfo *result, *rp; int s, listen_sock; memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_UNSPEC; /* Return IPv4 and IPv6 choices */ hints.ai_socktype = SOCK_STREAM; /* We want a TCP socket */ s = getaddrinfo("0.0.0.0", port, &hints, &result); if (s != 0) { LOGD("getaddrinfo: %s\n", gai_strerror(s)); return -1; } for (rp = result; rp != NULL; rp = rp->ai_next) { listen_sock = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); if (listen_sock == -1) continue; int opt = 1; int err = setsockopt(listen_sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)); if (err) { perror("setsocket"); } s = bind(listen_sock, rp->ai_addr, rp->ai_addrlen); if (s == 0) { /* We managed to bind successfully! */ break; } else { perror("bind"); } close(listen_sock); } if (rp == NULL) { LOGE("Could not bind\n"); return -1; } freeaddrinfo(result); return listen_sock; } static void server_recv_cb (EV_P_ ev_io *w, int revents) { struct server_ctx *server_recv_ctx = (struct server_ctx *)w; struct server *server = server_recv_ctx->server; struct remote *remote = server->remote; if (remote == NULL) { close_and_free_server(EV_A_ server); return; } while (1) { char *buf = remote->buf; int *buf_len = &remote->buf_len; if (server->stage != 5) { buf = server->buf; buf_len = &server->buf_len; } ssize_t r = recv(server->fd, buf, BUF_SIZE, 0); if (r == 0) { // connection closed *buf_len = 0; close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else if(r < 0) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data // continue to wait for recv break; } else { perror("server recv"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } // local socks5 server if (server->stage == 5) { encrypt_ctx(remote->buf, r, server->e_ctx); int w = send(remote->fd, remote->buf, r, 0); if(w == -1) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data, wait for send remote->buf_len = r; ev_io_stop(EV_A_ &server_recv_ctx->io); ev_io_start(EV_A_ &remote->send_ctx->io); break; } else { perror("send"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } else if(w < r) { char *pt = remote->buf; char *et = pt + r; while (pt + w < et) { *pt = *(pt + w); pt++; } remote->buf_len = r - w; assert(remote->buf_len >= 0); ev_io_stop(EV_A_ &server_recv_ctx->io); ev_io_start(EV_A_ &remote->send_ctx->io); break; } } else if (server->stage == 0) { struct method_select_response response; response.ver = SVERSION; response.method = 0; char *send_buf = (char *)&response; send(server->fd, send_buf, sizeof(response), 0); server->stage = 1; return; } else if (server->stage == 1) { struct socks5_request *request = (struct socks5_request *)server->buf; if (request->cmd != 1) { LOGE("unsupported cmd: %d\n", request->cmd); struct socks5_response response; response.ver = SVERSION; response.rep = CMD_NOT_SUPPORTED; response.rsv = 0; response.atyp = 1; char *send_buf = (char *)&response; send(server->fd, send_buf, 4, 0); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } char addr_to_send[256]; unsigned char addr_len = 0; addr_to_send[addr_len++] = request->atyp; // get remote addr and port if (request->atyp == 1) { // IP V4 size_t in_addr_len = sizeof(struct in_addr); memcpy(addr_to_send + addr_len, server->buf + 4, in_addr_len + 2); addr_len += in_addr_len + 2; } else if (request->atyp == 3) { // Domain name unsigned char name_len = *(unsigned char *)(server->buf + 4); addr_to_send[addr_len++] = name_len; memcpy(addr_to_send + addr_len, server->buf + 4 + 1, name_len); addr_len += name_len; // get port addr_to_send[addr_len++] = *(unsigned char *)(server->buf + 4 + 1 + name_len); addr_to_send[addr_len++] = *(unsigned char *)(server->buf + 4 + 1 + name_len + 1); } else { LOGE("unsupported addrtype: %d\n", request->atyp); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } encrypt_ctx(addr_to_send, addr_len, server->e_ctx); send(remote->fd, addr_to_send, addr_len, 0); // Fake reply struct socks5_response response; response.ver = SVERSION; response.rep = 0; response.rsv = 0; response.atyp = 1; struct in_addr sin_addr; inet_aton("0.0.0.0", &sin_addr); memcpy(server->buf, &response, 4); memcpy(server->buf + 4, &sin_addr, sizeof(struct in_addr)); *((unsigned short *)(server->buf + 4 + sizeof(struct in_addr))) = (unsigned short) htons(atoi(_remote_port)); int reply_size = 4 + sizeof(struct in_addr) + sizeof(unsigned short); int r = send(server->fd, server->buf, reply_size, 0); if (r < reply_size) { LOGE("header not complete sent\n"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } server->stage = 5; } } } static void server_send_cb (EV_P_ ev_io *w, int revents) { struct server_ctx *server_send_ctx = (struct server_ctx *)w; struct server *server = server_send_ctx->server; struct remote *remote = server->remote; if (server->buf_len == 0) { // close and free close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else { // has data to send ssize_t r = send(server->fd, server->buf, server->buf_len, 0); if (r < 0) { if (errno == EAGAIN || errno == EWOULDBLOCK) { perror("send"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } return; } if (r < server->buf_len) { // partly sent, move memory, wait for the next time to send char *pt = server->buf; char *et = pt + server->buf_len; while (pt + r < et) { *pt = *(pt + r); pt++; } server->buf_len -= r; assert(server->buf_len >= 0); return; } else { // all sent out, wait for reading ev_io_stop(EV_A_ &server_send_ctx->io); if (remote != NULL) { ev_io_start(EV_A_ &remote->recv_ctx->io); } else { close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } } } static void remote_timeout_cb(EV_P_ ev_timer *watcher, int revents) { struct remote_ctx *remote_ctx = (struct remote_ctx *) (((void*)watcher) - sizeof(ev_io)); struct remote *remote = remote_ctx->remote; struct server *server = remote->server; LOGD("remote timeout\n"); ev_timer_stop(EV_A_ watcher); if (server == NULL) { close_and_free_remote(EV_A_ remote); return; } close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } static void remote_recv_cb (EV_P_ ev_io *w, int revents) { struct remote_ctx *remote_recv_ctx = (struct remote_ctx *)w; struct remote *remote = remote_recv_ctx->remote; struct server *server = remote->server; if (server == NULL) { close_and_free_remote(EV_A_ remote); return; } while (1) { ssize_t r = recv(remote->fd, server->buf, BUF_SIZE, 0); if (r == 0) { // connection closed server->buf_len = 0; close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else if(r < 0) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data // continue to wait for recv break; } else { perror("remote recv"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } decrypt_ctx(server->buf, r, server->d_ctx); int w = send(server->fd, server->buf, r, 0); if(w == -1) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data, wait for send server->buf_len = r; ev_io_stop(EV_A_ &remote_recv_ctx->io); ev_io_start(EV_A_ &server->send_ctx->io); break; } else { perror("send"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } else if(w < r) { char *pt = server->buf; char *et = pt + r; while (pt + w < et) { *pt = *(pt + w); pt++; } server->buf_len = r - w; assert(server->buf_len >= 0); ev_io_stop(EV_A_ &remote_recv_ctx->io); ev_io_start(EV_A_ &server->send_ctx->io); break; } } } static void remote_send_cb (EV_P_ ev_io *w, int revents) { struct remote_ctx *remote_send_ctx = (struct remote_ctx *)w; struct remote *remote = remote_send_ctx->remote; struct server *server = remote->server; if (!remote_send_ctx->connected) { struct sockaddr_storage addr; socklen_t len = sizeof addr; int r = getpeername(remote->fd, (struct sockaddr*)&addr, &len); if (r == 0) { remote_send_ctx->connected = 1; ev_io_stop(EV_A_ &remote_send_ctx->io); ev_timer_stop(EV_A_ &remote_send_ctx->watcher); ev_io_start(EV_A_ &server->recv_ctx->io); ev_io_start(EV_A_ &remote->recv_ctx->io); return; } else { perror("getpeername"); // not connected close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } else { if (remote->buf_len == 0) { // close and free close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else { // has data to send ssize_t r = send(remote->fd, remote->buf, remote->buf_len, 0); if (r < 0) { if (errno != EAGAIN && errno != EWOULDBLOCK) { perror("send"); // close and free close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } return; } if (r < remote->buf_len) { // partly sent, move memory, wait for the next time to send char *pt = remote->buf; char *et = pt + remote->buf_len; while (pt + r < et) { *pt = *(pt + r); pt++; } remote->buf_len -= r; assert(remote->buf_len >= 0); return; } else { // all sent out, wait for reading ev_io_stop(EV_A_ &remote_send_ctx->io); if (server != NULL) { ev_io_start(EV_A_ &server->recv_ctx->io); } else { close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } } } } struct remote* new_remote(int fd) { struct remote *remote; remote = malloc(sizeof(struct remote)); remote->recv_ctx = malloc(sizeof(struct remote_ctx)); remote->send_ctx = malloc(sizeof(struct remote_ctx)); remote->fd = fd; ev_io_init(&remote->recv_ctx->io, remote_recv_cb, fd, EV_READ); ev_io_init(&remote->send_ctx->io, remote_send_cb, fd, EV_WRITE); ev_timer_init(&remote->send_ctx->watcher, remote_timeout_cb, _timeout, 0); remote->recv_ctx->remote = remote; remote->recv_ctx->connected = 0; remote->send_ctx->remote = remote; remote->send_ctx->connected = 0; remote->buf_len = 0; return remote; } void free_remote(struct remote *remote) { if (remote != NULL) { if (remote->server != NULL) { remote->server->remote = NULL; } free(remote->recv_ctx); free(remote->send_ctx); free(remote); } } void close_and_free_remote(EV_P_ struct remote *remote) { if (remote != NULL) { ev_timer_stop(EV_A_ &remote->send_ctx->watcher); ev_io_stop(EV_A_ &remote->send_ctx->io); ev_io_stop(EV_A_ &remote->recv_ctx->io); close(remote->fd); free_remote(remote); } } struct server* new_server(int fd) { struct server *server; server = malloc(sizeof(struct server)); server->recv_ctx = malloc(sizeof(struct server_ctx)); server->send_ctx = malloc(sizeof(struct server_ctx)); server->fd = fd; ev_io_init(&server->recv_ctx->io, server_recv_cb, fd, EV_READ); ev_io_init(&server->send_ctx->io, server_send_cb, fd, EV_WRITE); server->recv_ctx->server = server; server->recv_ctx->connected = 0; server->send_ctx->server = server; server->send_ctx->connected = 0; server->stage = 0; if (_method == RC4) { server->e_ctx = malloc(sizeof(EVP_CIPHER_CTX)); server->d_ctx = malloc(sizeof(EVP_CIPHER_CTX)); enc_ctx_init(server->e_ctx, 1); enc_ctx_init(server->d_ctx, 0); } else { server->e_ctx = NULL; server->d_ctx = NULL; } server->buf_len = 0; return server; } void free_server(struct server *server) { if (server != NULL) { if (server->remote != NULL) { server->remote->server = NULL; } if (_method == RC4) { EVP_CIPHER_CTX_cleanup(server->e_ctx); EVP_CIPHER_CTX_cleanup(server->d_ctx); free(server->e_ctx); free(server->d_ctx); } free(server->recv_ctx); free(server->send_ctx); free(server); } } void close_and_free_server(EV_P_ struct server *server) { if (server != NULL) { ev_io_stop(EV_A_ &server->send_ctx->io); ev_io_stop(EV_A_ &server->recv_ctx->io); close(server->fd); free_server(server); } } static void accept_cb (EV_P_ ev_io *w, int revents) { struct listen_ctx *listener = (struct listen_ctx *)w; int serverfd; while (1) { serverfd = accept(listener->fd, NULL, NULL); if (serverfd == -1) { perror("accept"); break; } setnonblocking(serverfd); struct server *server = new_server(serverfd); struct addrinfo hints, *res; int sockfd; memset(&hints, 0, sizeof hints); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; int err = getaddrinfo(_server, _remote_port, &hints, &res); if (err) { perror("getaddrinfo"); close_and_free_server(EV_A_ server); break; } sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol); if (sockfd < 0) { perror("socket"); close(sockfd); close_and_free_server(EV_A_ server); freeaddrinfo(res); break; } struct timeval timeout; timeout.tv_sec = _timeout; timeout.tv_usec = 0; err = setsockopt(sockfd, SOL_SOCKET, SO_RCVTIMEO, (char *)&timeout, sizeof(timeout)); if (err) perror("setsockopt"); err = setsockopt(sockfd, SOL_SOCKET, SO_SNDTIMEO, (char *)&timeout, sizeof(timeout)); if (err) perror("setsockopt"); setnonblocking(sockfd); struct remote *remote = new_remote(sockfd); server->remote = remote; remote->server = server; connect(sockfd, res->ai_addr, res->ai_addrlen); freeaddrinfo(res); // listen to remote connected event ev_io_start(EV_A_ &remote->send_ctx->io); ev_timer_start(EV_A_ &remote->send_ctx->watcher); break; } } static void print_usage() { printf("usage: ss -s server_host -p server_port -l local_port\n"); printf(" -k password [-m encrypt_method] [-f pid_file]\n"); printf("\n"); printf("info:\n"); printf(" encrypt_method: table, rc4\n"); printf(" pid_file: valid path to the pid file\n"); } int main (int argc, char **argv) { char *server = NULL; char *remote_port = NULL; char *port = NULL; char *key = NULL; char *timeout = "10"; char *method = NULL; int c; int f_flags = 0; char *f_path = NULL; opterr = 0; while ((c = getopt (argc, argv, "f:s:p:l:k:t:m:")) != -1) { switch (c) { case 's': server = optarg; break; case 'p': remote_port = optarg; break; case 'l': port = optarg; break; case 'k': key = optarg; break; case 'f': f_flags = 1; f_path = optarg; break; case 't': timeout = optarg; break; case 'm': method = optarg; break; } } if (server == NULL || remote_port == NULL || port == NULL || key == NULL) { print_usage(); exit(EXIT_FAILURE); } if (f_flags) { if (f_path == NULL) { print_usage(); exit(EXIT_FAILURE); } /* Our process ID and Session ID */ pid_t pid, sid; /* Fork off the parent process */ pid = fork(); if (pid < 0) { exit(EXIT_FAILURE); } /* If we got a good PID, then we can exit the parent process. */ if (pid > 0) { FILE *file = fopen(f_path, "w"); fprintf(file, "%d", pid); fclose(file); exit(EXIT_SUCCESS); } /* Change the file mode mask */ umask(0); /* Open any logs here */ /* Create a new SID for the child process */ sid = setsid(); if (sid < 0) { /* Log the failure */ exit(EXIT_FAILURE); } /* Change the current working directory */ if ((chdir("/")) < 0) { /* Log the failure */ exit(EXIT_FAILURE); } /* Close out the standard file descriptors */ close(STDIN_FILENO); close(STDOUT_FILENO); close(STDERR_FILENO); } signal(SIGPIPE, SIG_IGN); // init global variables _server = strdup(server); _remote_port = strdup(remote_port); _timeout = atoi(timeout); _method = TABLE; if (method != NULL) { if (strcmp(method, "rc4") == 0) { _method = RC4; } } LOGD("calculating ciphers %d\n", _method); if (_method == RC4) { enc_key_init(key); } else { get_table(key); } int listenfd; listenfd = create_and_bind(port); if (listenfd < 0) { LOGE("bind() error..\n"); return 1; } if (listen(listenfd, SOMAXCONN) == -1) { LOGE("listen() error.\n"); return 1; } LOGD("server listening at port %s\n", port); setnonblocking(listenfd); struct listen_ctx listen_ctx; listen_ctx.fd = listenfd; struct ev_loop *loop = ev_default_loop(0); if (!loop) { return 1; } ev_io_init (&listen_ctx.io, accept_cb, listenfd, EV_READ); ev_io_start (loop, &listen_ctx.io); ev_run (loop, 0); return 0; }