You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1127 lines
28 KiB

#include <sys/stat.h>
#include <sys/types.h>
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <locale.h>
#include <netdb.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <pthread.h>
#include <signal.h>
#include <string.h>
#include <strings.h>
#include <time.h>
#include <unistd.h>
#include <getopt.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#if defined(HAVE_SYS_IOCTL_H) && defined(HAVE_NET_IF_H) && defined(__linux__)
#include <net/if.h>
#include <sys/ioctl.h>
#define SET_INTERFACE
#endif
#include "utils.h"
#include "server.h"
#ifndef EAGAIN
#define EAGAIN EWOULDBLOCK
#endif
#ifndef EWOULDBLOCK
#define EWOULDBLOCK EAGAIN
#endif
#ifndef BUF_SIZE
#define BUF_SIZE 512
#endif
int verbose = 0;
int udprelay = 0;
#ifdef TCP_FASTOPEN
static int fast_open = 0;
#endif
static int remote_conn = 0;
static int server_conn = 0;
int setnonblocking(int fd)
{
int flags;
if (-1 ==(flags = fcntl(fd, F_GETFL, 0)))
flags = 0;
return fcntl(fd, F_SETFL, flags | O_NONBLOCK);
}
#ifdef SET_INTERFACE
int setinterface(int socket_fd, const char* interface_name)
{
struct ifreq interface;
memset(&interface, 0, sizeof(interface));
strncpy(interface.ifr_name, interface_name, IFNAMSIZ);
int res = setsockopt(socket_fd, SOL_SOCKET, SO_BINDTODEVICE, &interface, sizeof(struct ifreq));
return res;
}
#endif
int create_and_bind(const char *host, const char *port)
{
struct addrinfo hints;
struct addrinfo *result, *rp;
int s, listen_sock;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC; /* Return IPv4 and IPv6 choices */
hints.ai_socktype = SOCK_STREAM; /* We want a TCP socket */
s = getaddrinfo(host, port, &hints, &result);
if (s != 0)
{
LOGE("getaddrinfo: %s", gai_strerror(s));
return -1;
}
for (rp = result; rp != NULL; rp = rp->ai_next)
{
listen_sock = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
if (listen_sock == -1)
continue;
int opt = 1;
setsockopt(listen_sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
setsockopt(listen_sock, IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt));
#ifdef SO_NOSIGPIPE
setsockopt(listen_sock, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt));
#endif
#ifdef TCP_FASTOPEN
if (fast_open)
{
opt = 5;
int r = setsockopt(listen_sock, IPPROTO_TCP, TCP_FASTOPEN, &opt, sizeof(opt));
if (r == -1)
{
if (errno == EPROTONOSUPPORT || errno == ENOPROTOOPT)
{
LOGE("fast open is not supported on this platform");
}
else
{
ERROR("setsockopt");
}
}
}
#endif
s = bind(listen_sock, rp->ai_addr, rp->ai_addrlen);
if (s == 0)
{
/* We managed to bind successfully! */
break;
}
else
{
ERROR("bind");
}
close(listen_sock);
}
if (rp == NULL)
{
LOGE("Could not bind");
return -1;
}
freeaddrinfo(result);
return listen_sock;
}
struct remote *connect_to_remote(struct addrinfo *res, const char *iface)
{
int sockfd;
int opt = 1;
// initilize remote socks
sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
if (sockfd < 0)
{
ERROR("socket");
close(sockfd);
return NULL;
}
setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt));
#ifdef SO_NOSIGPIPE
setsockopt(sockfd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt));
#endif
struct remote *remote = new_remote(sockfd);
// setup remote socks
setnonblocking(sockfd);
#ifdef SET_INTERFACE
if (iface) setinterface(sockfd, iface);
#endif
connect(sockfd, res->ai_addr, res->ai_addrlen);
return remote;
}
static void server_recv_cb (EV_P_ ev_io *w, int revents)
{
struct server_ctx *server_recv_ctx = (struct server_ctx *)w;
struct server *server = server_recv_ctx->server;
struct remote *remote = NULL;
int len = server->buf_len;
char **buf = &server->buf;
ev_timer_again(EV_A_ &server->recv_ctx->watcher);
if (server->stage != 0)
{
remote = server->remote;
buf = &remote->buf;
len = 0;
}
ssize_t r = recv(server->fd, *buf + len, BUF_SIZE - len, 0);
if (r == 0)
{
// connection closed
if (verbose)
{
LOGD("server_recv close the connection");
}
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
else if (r == -1)
{
if (errno == EAGAIN || errno == EWOULDBLOCK)
{
// no data
// continue to wait for recv
return;
}
else
{
ERROR("server recv");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
// handle incomplete header
if (server->stage == 0)
{
r += server->buf_len;
if (r <= enc_get_iv_len())
{
// wait for more
if (verbose)
{
LOGD("imcomplete header: %zu", r);
}
server->buf_len = r;
return;
}
else
{
server->buf_len = 0;
}
}
*buf = ss_decrypt(BUF_SIZE, *buf, &r, server->d_ctx);
if (*buf == NULL)
{
LOGE("invalid password or cipher");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
// handshake and transmit data
if (server->stage == 5)
{
int s = send(remote->fd, remote->buf, r, 0);
if (s == -1)
{
if (errno == EAGAIN || errno == EWOULDBLOCK)
{
// no data, wait for send
remote->buf_len = r;
remote->buf_idx = 0;
ev_io_stop(EV_A_ &server_recv_ctx->io);
ev_io_start(EV_A_ &remote->send_ctx->io);
}
else
{
ERROR("server_recv_send");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
}
else if (s < r)
{
remote->buf_len = r - s;
remote->buf_idx = s;
ev_io_stop(EV_A_ &server_recv_ctx->io);
ev_io_start(EV_A_ &remote->send_ctx->io);
}
return;
}
else if (server->stage == 0)
{
/*
* Shadowsocks Protocol:
*
* +------+----------+----------+
* | ATYP | DST.ADDR | DST.PORT |
* +------+----------+----------+
* | 1 | Variable | 2 |
* +------+----------+----------+
*/
int offset = 0;
char atyp = server->buf[offset++];
char host[256] = {0};
char port[64] = {0};
// get remote addr and port
if (atyp == 1)
{
// IP V4
size_t in_addr_len = sizeof(struct in_addr);
if (r > in_addr_len)
{
inet_ntop(AF_INET, (const void *)(server->buf + offset),
host, INET_ADDRSTRLEN);
offset += in_addr_len;
}
}
else if (atyp == 3)
{
// Domain name
uint8_t name_len = *(uint8_t *)(server->buf + offset);
if (name_len < r && name_len < 255 && name_len > 0)
{
memcpy(host, server->buf + offset + 1, name_len);
offset += name_len + 1;
}
}
else if (atyp == 4)
{
// IP V6
size_t in6_addr_len = sizeof(struct in6_addr);
if (r > in6_addr_len)
{
inet_ntop(AF_INET6, (const void*)(server->buf + offset),
host, INET6_ADDRSTRLEN);
offset += in6_addr_len;
}
}
if (offset == 1)
{
LOGE("invalid header with addr type %d", atyp);
close_and_free_server(EV_A_ server);
return;
}
sprintf(port, "%d",
ntohs(*(uint16_t *)(server->buf + offset)));
offset += 2;
if (verbose)
{
LOGD("connect to: %s:%s", host, port);
}
struct addrinfo hints;
asyncns_query_t *query;
memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
query = asyncns_getaddrinfo(server->listen_ctx->asyncns,
host, port, &hints);
if (query == NULL)
{
ERROR("asyncns_getaddrinfo");
close_and_free_server(EV_A_ server);
return;
}
asyncns_setuserdata(server->listen_ctx->asyncns, query, server);
// XXX: should handle buffer carefully
if (r > offset)
{
server->buf_len = r - offset;
server->buf_idx = offset;
}
server->stage = 4;
server->query = query;
ev_io_stop(EV_A_ &server_recv_ctx->io);
return;
}
// should not reach here
FATAL("server context error.");
}
static void server_send_cb (EV_P_ ev_io *w, int revents)
{
struct server_ctx *server_send_ctx = (struct server_ctx *)w;
struct server *server = server_send_ctx->server;
struct remote *remote = server->remote;
if (remote == NULL)
{
LOGE("invalid server.");
close_and_free_server(EV_A_ server);
return;
}
if (server->buf_len == 0)
{
// close and free
if (verbose)
{
LOGD("server_send close the connection");
}
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
else
{
// has data to send
ssize_t s = send(server->fd, server->buf + server->buf_idx,
server->buf_len, 0);
if (s < 0)
{
if (errno != EAGAIN && errno != EWOULDBLOCK)
{
ERROR("server_send_send");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
return;
}
else if (s < server->buf_len)
{
// partly sent, move memory, wait for the next time to send
server->buf_len -= s;
server->buf_idx += s;
return;
}
else
{
// all sent out, wait for reading
server->buf_len = 0;
server->buf_idx = 0;
ev_io_stop(EV_A_ &server_send_ctx->io);
if (remote != NULL)
{
ev_io_start(EV_A_ &remote->recv_ctx->io);
return;
}
else
{
LOGE("invalid remote.");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
}
}
static void server_timeout_cb(EV_P_ ev_timer *watcher, int revents)
{
struct server_ctx *server_ctx = (struct server_ctx *) (((void*)watcher)
- sizeof(ev_io));
struct server *server = server_ctx->server;
struct remote *remote = server->remote;
LOGE("TCP connection timeout");
ev_timer_stop(EV_A_ watcher);
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
static void server_resolve_cb(EV_P_ ev_io *w, int revents)
{
int err;
struct addrinfo *result, *rp;
struct listen_ctx *listen_ctx = (struct listen_ctx *)w;
asyncns_t *asyncns = listen_ctx->asyncns;
err = asyncns_handle(asyncns);
if (err == ASYNCNS_HANDLE_AGAIN)
{
// try again
return;
}
else if (err == ASYNCNS_HANDLE_ERROR)
{
// asyncns error
FATAL("asyncns exit unexpectedly.");
}
asyncns_query_t *query = asyncns_getnext(asyncns);
struct server *server= (struct server*) asyncns_getuserdata(asyncns, query);
if (!asyncns_isdone(asyncns, query))
{
// wait for reolver
return;
}
server->query = NULL;
if (verbose)
{
LOGD("asyncns resolved.");
}
err = asyncns_getaddrinfo_done(asyncns, query, &result);
if (err)
{
ERROR("getaddrinfo");
close_and_free_server(EV_A_ server);
}
else
{
// Use IPV4 address if possible
for (rp = result; rp != NULL; rp = rp->ai_next)
{
if (rp->ai_family == AF_INET) break;
}
if (rp == NULL)
{
rp = result;
}
struct remote *remote = connect_to_remote(rp, server->listen_ctx->iface);
if (remote == NULL)
{
LOGE("connect error.");
close_and_free_server(EV_A_ server);
}
else
{
server->remote = remote;
remote->server = server;
// XXX: should handel buffer carefully
if (server->buf_len > 0)
{
memcpy(remote->buf, server->buf + server->buf_idx, server->buf_len);
remote->buf_len = server->buf_len;
remote->buf_idx = 0;
server->buf_len = 0;
server->buf_idx = 0;
}
// listen to remote connected event
ev_io_start(EV_A_ &remote->send_ctx->io);
}
}
// release addrinfo
asyncns_freeaddrinfo(result);
}
static void remote_recv_cb (EV_P_ ev_io *w, int revents)
{
struct remote_ctx *remote_recv_ctx = (struct remote_ctx *)w;
struct remote *remote = remote_recv_ctx->remote;
struct server *server = remote->server;
if (server == NULL)
{
LOGE("invalid server.");
close_and_free_remote(EV_A_ remote);
return;
}
ev_timer_again(EV_A_ &server->recv_ctx->watcher);
ssize_t r = recv(remote->fd, server->buf, BUF_SIZE, 0);
if (r == 0)
{
// connection closed
if (verbose)
{
LOGD("remote_recv close the connection");
}
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
else if (r < 0)
{
if (errno == EAGAIN || errno == EWOULDBLOCK)
{
// no data
// continue to wait for recv
return;
}
else
{
ERROR("remote recv");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
server->buf = ss_encrypt(BUF_SIZE, server->buf, &r, server->e_ctx);
if (server->buf == NULL)
{
LOGE("invalid password or cipher");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
int s = send(server->fd, server->buf, r, 0);
if (s == -1)
{
if (errno == EAGAIN || errno == EWOULDBLOCK)
{
// no data, wait for send
server->buf_len = r;
server->buf_idx = 0;
ev_io_stop(EV_A_ &remote_recv_ctx->io);
ev_io_start(EV_A_ &server->send_ctx->io);
}
else
{
ERROR("remote_recv_send");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
return;
}
else if (s < r)
{
server->buf_len = r - s;
server->buf_idx = s;
ev_io_stop(EV_A_ &remote_recv_ctx->io);
ev_io_start(EV_A_ &server->send_ctx->io);
return;
}
}
static void remote_send_cb (EV_P_ ev_io *w, int revents)
{
struct remote_ctx *remote_send_ctx = (struct remote_ctx *)w;
struct remote *remote = remote_send_ctx->remote;
struct server *server = remote->server;
if (server == NULL)
{
LOGE("invalid server.");
close_and_free_remote(EV_A_ remote);
return;
}
if (!remote_send_ctx->connected)
{
struct sockaddr_storage addr;
socklen_t len = sizeof addr;
int r = getpeername(remote->fd, (struct sockaddr*)&addr, &len);
if (r == 0)
{
if (verbose)
{
LOGD("remote connected.");
}
remote_send_ctx->connected = 1;
if (remote->buf_len == 0)
{
server->stage = 5;
ev_io_stop(EV_A_ &remote_send_ctx->io);
ev_io_start(EV_A_ &server->recv_ctx->io);
ev_io_start(EV_A_ &remote->recv_ctx->io);
return;
}
}
else
{
ERROR("getpeername");
// not connected
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
if (remote->buf_len == 0)
{
// close and free
if (verbose)
{
LOGD("remote_send close the connection");
}
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
else
{
// has data to send
ssize_t s = send(remote->fd, remote->buf + remote->buf_idx,
remote->buf_len, 0);
if (s == -1)
{
if (errno != EAGAIN && errno != EWOULDBLOCK)
{
ERROR("remote_send_send");
// close and free
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
return;
}
else if (s < remote->buf_len)
{
// partly sent, move memory, wait for the next time to send
remote->buf_len -= s;
remote->buf_idx += s;
return;
}
else
{
// all sent out, wait for reading
remote->buf_len = 0;
remote->buf_idx = 0;
ev_io_stop(EV_A_ &remote_send_ctx->io);
if (server != NULL)
{
ev_io_start(EV_A_ &server->recv_ctx->io);
if (server->stage == 4)
{
server->stage = 5;
ev_io_start(EV_A_ &remote->recv_ctx->io);
}
}
else
{
LOGE("invalid server.");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
return;
}
}
}
struct remote* new_remote(int fd)
{
if (verbose) remote_conn++;
struct remote *remote;
remote = malloc(sizeof(struct remote));
remote->buf = malloc(BUF_SIZE);
remote->recv_ctx = malloc(sizeof(struct remote_ctx));
remote->send_ctx = malloc(sizeof(struct remote_ctx));
remote->fd = fd;
ev_io_init(&remote->recv_ctx->io, remote_recv_cb, fd, EV_READ);
ev_io_init(&remote->send_ctx->io, remote_send_cb, fd, EV_WRITE);
remote->recv_ctx->remote = remote;
remote->recv_ctx->connected = 0;
remote->send_ctx->remote = remote;
remote->send_ctx->connected = 0;
remote->buf_len = 0;
remote->buf_idx = 0;
remote->server = NULL;
return remote;
}
void free_remote(struct remote *remote)
{
if (remote != NULL)
{
if (remote->server != NULL)
{
remote->server->remote = NULL;
}
if (remote->buf != NULL)
{
free(remote->buf);
}
free(remote->recv_ctx);
free(remote->send_ctx);
free(remote);
}
}
void close_and_free_remote(EV_P_ struct remote *remote)
{
if (remote != NULL)
{
ev_io_stop(EV_A_ &remote->send_ctx->io);
ev_io_stop(EV_A_ &remote->recv_ctx->io);
close(remote->fd);
free_remote(remote);
if (verbose)
{
remote_conn--;
LOGD("current remote connection: %d", remote_conn);
}
}
}
struct server* new_server(int fd, struct listen_ctx *listener)
{
if (verbose) server_conn++;
struct server *server;
server = malloc(sizeof(struct server));
server->buf = malloc(BUF_SIZE);
server->recv_ctx = malloc(sizeof(struct server_ctx));
server->send_ctx = malloc(sizeof(struct server_ctx));
server->fd = fd;
ev_io_init(&server->recv_ctx->io, server_recv_cb, fd, EV_READ);
ev_io_init(&server->send_ctx->io, server_send_cb, fd, EV_WRITE);
ev_timer_init(&server->recv_ctx->watcher, server_timeout_cb, listener->timeout, listener->timeout * 5);
server->recv_ctx->server = server;
server->recv_ctx->connected = 0;
server->send_ctx->server = server;
server->send_ctx->connected = 0;
server->stage = 0;
server->query = NULL;
server->listen_ctx = listener;
if (listener->method)
{
server->e_ctx = malloc(sizeof(struct enc_ctx));
server->d_ctx = malloc(sizeof(struct enc_ctx));
enc_ctx_init(listener->method, server->e_ctx, 1);
enc_ctx_init(listener->method, server->d_ctx, 0);
}
else
{
server->e_ctx = NULL;
server->d_ctx = NULL;
}
server->buf_len = 0;
server->buf_idx = 0;
server->remote = NULL;
return server;
}
void free_server(struct server *server)
{
if (server != NULL)
{
if (server->remote != NULL)
{
server->remote->server = NULL;
}
if (server->e_ctx != NULL)
{
cipher_context_release(&server->e_ctx->evp);
free(server->e_ctx);
}
if (server->d_ctx != NULL)
{
cipher_context_release(&server->d_ctx->evp);
free(server->d_ctx);
}
if (server->buf != NULL)
{
free(server->buf);
}
free(server->recv_ctx);
free(server->send_ctx);
free(server);
}
}
void close_and_free_server(EV_P_ struct server *server)
{
if (server != NULL)
{
if (server->query != NULL)
{
asyncns_cancel(server->listen_ctx->asyncns, server->query);
server->query = NULL;
}
ev_io_stop(EV_A_ &server->send_ctx->io);
ev_io_stop(EV_A_ &server->recv_ctx->io);
ev_timer_stop(EV_A_ &server->recv_ctx->watcher);
close(server->fd);
free_server(server);
if (verbose)
{
server_conn--;
LOGD("current server connection: %d", server_conn);
}
}
}
static void accept_cb (EV_P_ ev_io *w, int revents)
{
struct listen_ctx *listener = (struct listen_ctx *)w;
int serverfd = accept(listener->fd, NULL, NULL);
if (serverfd == -1)
{
ERROR("accept");
return;
}
setnonblocking(serverfd);
int opt = 1;
setsockopt(serverfd, IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt));
#ifdef SO_NOSIGPIPE
setsockopt(serverfd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt));
#endif
if (verbose)
{
LOGD("accept a connection.");
}
struct server *server = new_server(serverfd, listener);
ev_io_start(EV_A_ &server->recv_ctx->io);
ev_timer_start(EV_A_ &server->recv_ctx->watcher);
}
int main (int argc, char **argv)
{
int i, c;
int pid_flags = 0;
char *user = NULL;
char *password = NULL;
char *timeout = NULL;
char *method = NULL;
char *pid_path = NULL;
char *conf_path = NULL;
char *iface = NULL;
int server_num = 0;
const char *server_host[MAX_REMOTE_NUM];
const char *server_port = NULL;
int dns_thread_num = DNS_THREAD_NUM;
int option_index = 0;
static struct option long_options[] =
{
{"fast-open", no_argument, 0, 0 },
{0, 0, 0, 0 }
};
opterr = 0;
while ((c = getopt_long(argc, argv, "f:s:p:l:k:t:m:c:i:d:a:uv",
long_options, &option_index)) != -1)
{
switch (c)
{
case 0:
if (option_index == 0)
{
#ifdef TCP_FASTOPEN
fast_open = 1;
LOGD("using tcp fast open");
#else
LOGE("tcp fast open is not supported by this environment");
#endif
}
break;
case 's':
server_host[server_num++] = optarg;
break;
case 'p':
server_port = optarg;
break;
case 'k':
password = optarg;
break;
case 'f':
pid_flags = 1;
pid_path = optarg;
break;
case 't':
timeout = optarg;
break;
case 'm':
method = optarg;
break;
case 'c':
conf_path = optarg;
break;
case 'i':
iface = optarg;
break;
case 'd':
dns_thread_num = atoi(optarg);
if (!dns_thread_num) FATAL("Invalid DNS thread number");
break;
case 'a':
user = optarg;
break;
case 'u':
udprelay = 1;
break;
case 'v':
verbose = 1;
break;
}
}
if (opterr)
{
usage();
exit(EXIT_FAILURE);
}
if (conf_path != NULL)
{
jconf_t *conf = read_jconf(conf_path);
if (server_num == 0)
{
server_num = conf->remote_num;
for (i = 0; i < server_num; i++)
{
server_host[i] = conf->remote_addr[i].host;
}
}
if (server_port == NULL) server_port = conf->remote_port;
if (password == NULL) password = conf->password;
if (method == NULL) method = conf->method;
if (timeout == NULL) timeout = conf->timeout;
#ifdef TCP_FASTOPEN
if (fast_open == 0) fast_open = conf->fast_open;
#endif
}
if (server_num == 0 || server_port == NULL || password == NULL)
{
usage();
exit(EXIT_FAILURE);
}
if (timeout == NULL) timeout = "60";
if (pid_flags)
{
USE_SYSLOG(argv[0]);
daemonize(pid_path);
}
// ignore SIGPIPE
signal(SIGPIPE, SIG_IGN);
signal(SIGCHLD, SIG_IGN);
signal(SIGABRT, SIG_IGN);
// setup asyncns
asyncns_t *asyncns;
if (!(asyncns = asyncns_new(dns_thread_num)))
{
FATAL("asyncns failed");
}
// setup keys
LOGD("initialize ciphers... %s", method);
int m = enc_init(password, method);
// inilitialize ev loop
struct ev_loop *loop = EV_DEFAULT;
// inilitialize listen context
struct listen_ctx listen_ctx_list[server_num + 1];
// bind to each interface
while (server_num > 0)
{
int index = --server_num;
const char* host = server_host[index];
// Bind to port
int listenfd;
listenfd = create_and_bind(host, server_port);
if (listenfd < 0)
{
FATAL("bind() error..");
}
if (listen(listenfd, SOMAXCONN) == -1)
{
FATAL("listen() error.");
}
setnonblocking(listenfd);
LOGD("server listening at port %s.", server_port);
struct listen_ctx *listen_ctx = &listen_ctx_list[index + 1];
// Setup proxy context
listen_ctx->timeout = atoi(timeout);
listen_ctx->asyncns = asyncns;
listen_ctx->fd = listenfd;
listen_ctx->method = m;
listen_ctx->iface = iface;
ev_io_init (&listen_ctx->io, accept_cb, listenfd, EV_READ);
ev_io_start (loop, &listen_ctx->io);
}
// initialize the DNS
struct listen_ctx *listen_ctx = &listen_ctx_list[0];
int asyncnsfd = asyncns_fd(asyncns);
listen_ctx->timeout = atoi(timeout);
listen_ctx->asyncns = asyncns;
listen_ctx->fd = asyncnsfd;
listen_ctx->method = m;
listen_ctx->iface = iface;
ev_io_init (&listen_ctx->io, server_resolve_cb, asyncnsfd, EV_READ);
ev_io_start (loop, &listen_ctx->io);
// Setup UDP
if (udprelay)
{
LOGD("udprelay enabled.");
udprelay_init(server_host[0], server_port, dns_thread_num, m, listen_ctx->timeout, iface);
}
// setuid
if (user != NULL)
run_as(user);
// start ev loop
ev_run (loop, 0);
return 0;
}