#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_CONFIG_H #include "config.h" #endif #if defined(HAVE_SYS_IOCTL_H) && defined(HAVE_NET_IF_H) && defined(__linux__) #include #include #define SET_INTERFACE #endif #include "utils.h" #include "server.h" #ifndef EAGAIN #define EAGAIN EWOULDBLOCK #endif #ifndef EWOULDBLOCK #define EWOULDBLOCK EAGAIN #endif #ifndef BUF_SIZE #define BUF_SIZE 512 #endif int verbose = 0; int udprelay = 0; #ifdef TCP_FASTOPEN static int fast_open = 0; #endif static int remote_conn = 0; static int server_conn = 0; int setnonblocking(int fd) { int flags; if (-1 ==(flags = fcntl(fd, F_GETFL, 0))) flags = 0; return fcntl(fd, F_SETFL, flags | O_NONBLOCK); } #ifdef SET_INTERFACE int setinterface(int socket_fd, const char* interface_name) { struct ifreq interface; memset(&interface, 0, sizeof(interface)); strncpy(interface.ifr_name, interface_name, IFNAMSIZ); int res = setsockopt(socket_fd, SOL_SOCKET, SO_BINDTODEVICE, &interface, sizeof(struct ifreq)); return res; } #endif int create_and_bind(const char *host, const char *port) { struct addrinfo hints; struct addrinfo *result, *rp; int s, listen_sock; memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_UNSPEC; /* Return IPv4 and IPv6 choices */ hints.ai_socktype = SOCK_STREAM; /* We want a TCP socket */ s = getaddrinfo(host, port, &hints, &result); if (s != 0) { LOGE("getaddrinfo: %s", gai_strerror(s)); return -1; } for (rp = result; rp != NULL; rp = rp->ai_next) { listen_sock = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); if (listen_sock == -1) continue; int opt = 1; setsockopt(listen_sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)); setsockopt(listen_sock, IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt)); #ifdef SO_NOSIGPIPE setsockopt(listen_sock, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt)); #endif #ifdef TCP_FASTOPEN if (fast_open) { opt = 5; int r = setsockopt(listen_sock, IPPROTO_TCP, TCP_FASTOPEN, &opt, sizeof(opt)); if (r == -1) { if (errno == EPROTONOSUPPORT || errno == ENOPROTOOPT) { LOGE("fast open is not supported on this platform"); } else { ERROR("setsockopt"); } } } #endif s = bind(listen_sock, rp->ai_addr, rp->ai_addrlen); if (s == 0) { /* We managed to bind successfully! */ break; } else { ERROR("bind"); } close(listen_sock); } if (rp == NULL) { LOGE("Could not bind"); return -1; } freeaddrinfo(result); return listen_sock; } struct remote *connect_to_remote(struct addrinfo *res, const char *iface) { int sockfd; int opt = 1; // initilize remote socks sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol); if (sockfd < 0) { ERROR("socket"); close(sockfd); return NULL; } setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt)); #ifdef SO_NOSIGPIPE setsockopt(sockfd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt)); #endif struct remote *remote = new_remote(sockfd); // setup remote socks setnonblocking(sockfd); #ifdef SET_INTERFACE if (iface) setinterface(sockfd, iface); #endif connect(sockfd, res->ai_addr, res->ai_addrlen); return remote; } static void server_recv_cb (EV_P_ ev_io *w, int revents) { struct server_ctx *server_recv_ctx = (struct server_ctx *)w; struct server *server = server_recv_ctx->server; struct remote *remote = NULL; int len = server->buf_len; char **buf = &server->buf; ev_timer_again(EV_A_ &server->recv_ctx->watcher); if (server->stage != 0) { remote = server->remote; buf = &remote->buf; len = 0; } ssize_t r = recv(server->fd, *buf + len, BUF_SIZE - len, 0); if (r == 0) { // connection closed if (verbose) { LOGD("server_recv close the connection"); } close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else if (r == -1) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data // continue to wait for recv return; } else { ERROR("server recv"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } // handle incomplete header if (server->stage == 0) { r += server->buf_len; if (r <= enc_get_iv_len()) { // wait for more if (verbose) { LOGD("imcomplete header: %zu", r); } server->buf_len = r; return; } else { server->buf_len = 0; } } *buf = ss_decrypt(BUF_SIZE, *buf, &r, server->d_ctx); if (*buf == NULL) { LOGE("invalid password or cipher"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } // handshake and transmit data if (server->stage == 5) { int s = send(remote->fd, remote->buf, r, 0); if (s == -1) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data, wait for send remote->buf_len = r; remote->buf_idx = 0; ev_io_stop(EV_A_ &server_recv_ctx->io); ev_io_start(EV_A_ &remote->send_ctx->io); } else { ERROR("server_recv_send"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } } else if (s < r) { remote->buf_len = r - s; remote->buf_idx = s; ev_io_stop(EV_A_ &server_recv_ctx->io); ev_io_start(EV_A_ &remote->send_ctx->io); } return; } else if (server->stage == 0) { /* * Shadowsocks Protocol: * * +------+----------+----------+ * | ATYP | DST.ADDR | DST.PORT | * +------+----------+----------+ * | 1 | Variable | 2 | * +------+----------+----------+ */ int offset = 0; char atyp = server->buf[offset++]; char host[256] = {0}; char port[64] = {0}; // get remote addr and port if (atyp == 1) { // IP V4 size_t in_addr_len = sizeof(struct in_addr); if (r > in_addr_len) { inet_ntop(AF_INET, (const void *)(server->buf + offset), host, INET_ADDRSTRLEN); offset += in_addr_len; } } else if (atyp == 3) { // Domain name uint8_t name_len = *(uint8_t *)(server->buf + offset); if (name_len < r && name_len < 255 && name_len > 0) { memcpy(host, server->buf + offset + 1, name_len); offset += name_len + 1; } } else if (atyp == 4) { // IP V6 size_t in6_addr_len = sizeof(struct in6_addr); if (r > in6_addr_len) { inet_ntop(AF_INET6, (const void*)(server->buf + offset), host, INET6_ADDRSTRLEN); offset += in6_addr_len; } } if (offset == 1) { LOGE("invalid header with addr type %d", atyp); close_and_free_server(EV_A_ server); return; } sprintf(port, "%d", ntohs(*(uint16_t *)(server->buf + offset))); offset += 2; if (verbose) { LOGD("connect to: %s:%s", host, port); } struct addrinfo hints; asyncns_query_t *query; memset(&hints, 0, sizeof hints); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; query = asyncns_getaddrinfo(server->listen_ctx->asyncns, host, port, &hints); if (query == NULL) { ERROR("asyncns_getaddrinfo"); close_and_free_server(EV_A_ server); return; } asyncns_setuserdata(server->listen_ctx->asyncns, query, server); // XXX: should handle buffer carefully if (r > offset) { server->buf_len = r - offset; server->buf_idx = offset; } server->stage = 4; server->query = query; ev_io_stop(EV_A_ &server_recv_ctx->io); return; } // should not reach here FATAL("server context error."); } static void server_send_cb (EV_P_ ev_io *w, int revents) { struct server_ctx *server_send_ctx = (struct server_ctx *)w; struct server *server = server_send_ctx->server; struct remote *remote = server->remote; if (remote == NULL) { LOGE("invalid server."); close_and_free_server(EV_A_ server); return; } if (server->buf_len == 0) { // close and free if (verbose) { LOGD("server_send close the connection"); } close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else { // has data to send ssize_t s = send(server->fd, server->buf + server->buf_idx, server->buf_len, 0); if (s < 0) { if (errno != EAGAIN && errno != EWOULDBLOCK) { ERROR("server_send_send"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } return; } else if (s < server->buf_len) { // partly sent, move memory, wait for the next time to send server->buf_len -= s; server->buf_idx += s; return; } else { // all sent out, wait for reading server->buf_len = 0; server->buf_idx = 0; ev_io_stop(EV_A_ &server_send_ctx->io); if (remote != NULL) { ev_io_start(EV_A_ &remote->recv_ctx->io); return; } else { LOGE("invalid remote."); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } } } static void server_timeout_cb(EV_P_ ev_timer *watcher, int revents) { struct server_ctx *server_ctx = (struct server_ctx *) (((void*)watcher) - sizeof(ev_io)); struct server *server = server_ctx->server; struct remote *remote = server->remote; LOGE("TCP connection timeout"); ev_timer_stop(EV_A_ watcher); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } static void server_resolve_cb(EV_P_ ev_io *w, int revents) { int err; struct addrinfo *result, *rp; struct listen_ctx *listen_ctx = (struct listen_ctx *)w; asyncns_t *asyncns = listen_ctx->asyncns; err = asyncns_handle(asyncns); if (err == ASYNCNS_HANDLE_AGAIN) { // try again return; } else if (err == ASYNCNS_HANDLE_ERROR) { // asyncns error FATAL("asyncns exit unexpectedly."); } asyncns_query_t *query = asyncns_getnext(asyncns); struct server *server= (struct server*) asyncns_getuserdata(asyncns, query); if (!asyncns_isdone(asyncns, query)) { // wait for reolver return; } server->query = NULL; if (verbose) { LOGD("asyncns resolved."); } err = asyncns_getaddrinfo_done(asyncns, query, &result); if (err) { ERROR("getaddrinfo"); close_and_free_server(EV_A_ server); } else { // Use IPV4 address if possible for (rp = result; rp != NULL; rp = rp->ai_next) { if (rp->ai_family == AF_INET) break; } if (rp == NULL) { rp = result; } struct remote *remote = connect_to_remote(rp, server->listen_ctx->iface); if (remote == NULL) { LOGE("connect error."); close_and_free_server(EV_A_ server); } else { server->remote = remote; remote->server = server; // XXX: should handel buffer carefully if (server->buf_len > 0) { memcpy(remote->buf, server->buf + server->buf_idx, server->buf_len); remote->buf_len = server->buf_len; remote->buf_idx = 0; server->buf_len = 0; server->buf_idx = 0; } // listen to remote connected event ev_io_start(EV_A_ &remote->send_ctx->io); } } // release addrinfo asyncns_freeaddrinfo(result); } static void remote_recv_cb (EV_P_ ev_io *w, int revents) { struct remote_ctx *remote_recv_ctx = (struct remote_ctx *)w; struct remote *remote = remote_recv_ctx->remote; struct server *server = remote->server; if (server == NULL) { LOGE("invalid server."); close_and_free_remote(EV_A_ remote); return; } ev_timer_again(EV_A_ &server->recv_ctx->watcher); ssize_t r = recv(remote->fd, server->buf, BUF_SIZE, 0); if (r == 0) { // connection closed if (verbose) { LOGD("remote_recv close the connection"); } close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else if (r < 0) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data // continue to wait for recv return; } else { ERROR("remote recv"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } server->buf = ss_encrypt(BUF_SIZE, server->buf, &r, server->e_ctx); if (server->buf == NULL) { LOGE("invalid password or cipher"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } int s = send(server->fd, server->buf, r, 0); if (s == -1) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data, wait for send server->buf_len = r; server->buf_idx = 0; ev_io_stop(EV_A_ &remote_recv_ctx->io); ev_io_start(EV_A_ &server->send_ctx->io); } else { ERROR("remote_recv_send"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } return; } else if (s < r) { server->buf_len = r - s; server->buf_idx = s; ev_io_stop(EV_A_ &remote_recv_ctx->io); ev_io_start(EV_A_ &server->send_ctx->io); return; } } static void remote_send_cb (EV_P_ ev_io *w, int revents) { struct remote_ctx *remote_send_ctx = (struct remote_ctx *)w; struct remote *remote = remote_send_ctx->remote; struct server *server = remote->server; if (server == NULL) { LOGE("invalid server."); close_and_free_remote(EV_A_ remote); return; } if (!remote_send_ctx->connected) { struct sockaddr_storage addr; socklen_t len = sizeof addr; int r = getpeername(remote->fd, (struct sockaddr*)&addr, &len); if (r == 0) { if (verbose) { LOGD("remote connected."); } remote_send_ctx->connected = 1; if (remote->buf_len == 0) { server->stage = 5; ev_io_stop(EV_A_ &remote_send_ctx->io); ev_io_start(EV_A_ &server->recv_ctx->io); ev_io_start(EV_A_ &remote->recv_ctx->io); return; } } else { ERROR("getpeername"); // not connected close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } if (remote->buf_len == 0) { // close and free if (verbose) { LOGD("remote_send close the connection"); } close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else { // has data to send ssize_t s = send(remote->fd, remote->buf + remote->buf_idx, remote->buf_len, 0); if (s == -1) { if (errno != EAGAIN && errno != EWOULDBLOCK) { ERROR("remote_send_send"); // close and free close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } return; } else if (s < remote->buf_len) { // partly sent, move memory, wait for the next time to send remote->buf_len -= s; remote->buf_idx += s; return; } else { // all sent out, wait for reading remote->buf_len = 0; remote->buf_idx = 0; ev_io_stop(EV_A_ &remote_send_ctx->io); if (server != NULL) { ev_io_start(EV_A_ &server->recv_ctx->io); if (server->stage == 4) { server->stage = 5; ev_io_start(EV_A_ &remote->recv_ctx->io); } } else { LOGE("invalid server."); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } return; } } } struct remote* new_remote(int fd) { if (verbose) remote_conn++; struct remote *remote; remote = malloc(sizeof(struct remote)); remote->buf = malloc(BUF_SIZE); remote->recv_ctx = malloc(sizeof(struct remote_ctx)); remote->send_ctx = malloc(sizeof(struct remote_ctx)); remote->fd = fd; ev_io_init(&remote->recv_ctx->io, remote_recv_cb, fd, EV_READ); ev_io_init(&remote->send_ctx->io, remote_send_cb, fd, EV_WRITE); remote->recv_ctx->remote = remote; remote->recv_ctx->connected = 0; remote->send_ctx->remote = remote; remote->send_ctx->connected = 0; remote->buf_len = 0; remote->buf_idx = 0; remote->server = NULL; return remote; } void free_remote(struct remote *remote) { if (remote != NULL) { if (remote->server != NULL) { remote->server->remote = NULL; } if (remote->buf != NULL) { free(remote->buf); } free(remote->recv_ctx); free(remote->send_ctx); free(remote); } } void close_and_free_remote(EV_P_ struct remote *remote) { if (remote != NULL) { ev_io_stop(EV_A_ &remote->send_ctx->io); ev_io_stop(EV_A_ &remote->recv_ctx->io); close(remote->fd); free_remote(remote); if (verbose) { remote_conn--; LOGD("current remote connection: %d", remote_conn); } } } struct server* new_server(int fd, struct listen_ctx *listener) { if (verbose) server_conn++; struct server *server; server = malloc(sizeof(struct server)); server->buf = malloc(BUF_SIZE); server->recv_ctx = malloc(sizeof(struct server_ctx)); server->send_ctx = malloc(sizeof(struct server_ctx)); server->fd = fd; ev_io_init(&server->recv_ctx->io, server_recv_cb, fd, EV_READ); ev_io_init(&server->send_ctx->io, server_send_cb, fd, EV_WRITE); ev_timer_init(&server->recv_ctx->watcher, server_timeout_cb, listener->timeout, listener->timeout * 5); server->recv_ctx->server = server; server->recv_ctx->connected = 0; server->send_ctx->server = server; server->send_ctx->connected = 0; server->stage = 0; server->query = NULL; server->listen_ctx = listener; if (listener->method) { server->e_ctx = malloc(sizeof(struct enc_ctx)); server->d_ctx = malloc(sizeof(struct enc_ctx)); enc_ctx_init(listener->method, server->e_ctx, 1); enc_ctx_init(listener->method, server->d_ctx, 0); } else { server->e_ctx = NULL; server->d_ctx = NULL; } server->buf_len = 0; server->buf_idx = 0; server->remote = NULL; return server; } void free_server(struct server *server) { if (server != NULL) { if (server->remote != NULL) { server->remote->server = NULL; } if (server->e_ctx != NULL) { cipher_context_release(&server->e_ctx->evp); free(server->e_ctx); } if (server->d_ctx != NULL) { cipher_context_release(&server->d_ctx->evp); free(server->d_ctx); } if (server->buf != NULL) { free(server->buf); } free(server->recv_ctx); free(server->send_ctx); free(server); } } void close_and_free_server(EV_P_ struct server *server) { if (server != NULL) { if (server->query != NULL) { asyncns_cancel(server->listen_ctx->asyncns, server->query); server->query = NULL; } ev_io_stop(EV_A_ &server->send_ctx->io); ev_io_stop(EV_A_ &server->recv_ctx->io); ev_timer_stop(EV_A_ &server->recv_ctx->watcher); close(server->fd); free_server(server); if (verbose) { server_conn--; LOGD("current server connection: %d", server_conn); } } } static void accept_cb (EV_P_ ev_io *w, int revents) { struct listen_ctx *listener = (struct listen_ctx *)w; int serverfd = accept(listener->fd, NULL, NULL); if (serverfd == -1) { ERROR("accept"); return; } setnonblocking(serverfd); int opt = 1; setsockopt(serverfd, IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt)); #ifdef SO_NOSIGPIPE setsockopt(serverfd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt)); #endif if (verbose) { LOGD("accept a connection."); } struct server *server = new_server(serverfd, listener); ev_io_start(EV_A_ &server->recv_ctx->io); ev_timer_start(EV_A_ &server->recv_ctx->watcher); } int main (int argc, char **argv) { int i, c; int pid_flags = 0; char *user = NULL; char *password = NULL; char *timeout = NULL; char *method = NULL; char *pid_path = NULL; char *conf_path = NULL; char *iface = NULL; int server_num = 0; const char *server_host[MAX_REMOTE_NUM]; const char *server_port = NULL; int dns_thread_num = DNS_THREAD_NUM; int option_index = 0; static struct option long_options[] = { {"fast-open", no_argument, 0, 0 }, {0, 0, 0, 0 } }; opterr = 0; while ((c = getopt_long(argc, argv, "f:s:p:l:k:t:m:c:i:d:a:uv", long_options, &option_index)) != -1) { switch (c) { case 0: if (option_index == 0) { #ifdef TCP_FASTOPEN fast_open = 1; LOGD("using tcp fast open"); #else LOGE("tcp fast open is not supported by this environment"); #endif } break; case 's': server_host[server_num++] = optarg; break; case 'p': server_port = optarg; break; case 'k': password = optarg; break; case 'f': pid_flags = 1; pid_path = optarg; break; case 't': timeout = optarg; break; case 'm': method = optarg; break; case 'c': conf_path = optarg; break; case 'i': iface = optarg; break; case 'd': dns_thread_num = atoi(optarg); if (!dns_thread_num) FATAL("Invalid DNS thread number"); break; case 'a': user = optarg; break; case 'u': udprelay = 1; break; case 'v': verbose = 1; break; } } if (opterr) { usage(); exit(EXIT_FAILURE); } if (conf_path != NULL) { jconf_t *conf = read_jconf(conf_path); if (server_num == 0) { server_num = conf->remote_num; for (i = 0; i < server_num; i++) { server_host[i] = conf->remote_addr[i].host; } } if (server_port == NULL) server_port = conf->remote_port; if (password == NULL) password = conf->password; if (method == NULL) method = conf->method; if (timeout == NULL) timeout = conf->timeout; #ifdef TCP_FASTOPEN if (fast_open == 0) fast_open = conf->fast_open; #endif } if (server_num == 0 || server_port == NULL || password == NULL) { usage(); exit(EXIT_FAILURE); } if (timeout == NULL) timeout = "60"; if (pid_flags) { USE_SYSLOG(argv[0]); daemonize(pid_path); } // ignore SIGPIPE signal(SIGPIPE, SIG_IGN); signal(SIGCHLD, SIG_IGN); signal(SIGABRT, SIG_IGN); // setup asyncns asyncns_t *asyncns; if (!(asyncns = asyncns_new(dns_thread_num))) { FATAL("asyncns failed"); } // setup keys LOGD("initialize ciphers... %s", method); int m = enc_init(password, method); // inilitialize ev loop struct ev_loop *loop = EV_DEFAULT; // inilitialize listen context struct listen_ctx listen_ctx_list[server_num + 1]; // bind to each interface while (server_num > 0) { int index = --server_num; const char* host = server_host[index]; // Bind to port int listenfd; listenfd = create_and_bind(host, server_port); if (listenfd < 0) { FATAL("bind() error.."); } if (listen(listenfd, SOMAXCONN) == -1) { FATAL("listen() error."); } setnonblocking(listenfd); LOGD("server listening at port %s.", server_port); struct listen_ctx *listen_ctx = &listen_ctx_list[index + 1]; // Setup proxy context listen_ctx->timeout = atoi(timeout); listen_ctx->asyncns = asyncns; listen_ctx->fd = listenfd; listen_ctx->method = m; listen_ctx->iface = iface; ev_io_init (&listen_ctx->io, accept_cb, listenfd, EV_READ); ev_io_start (loop, &listen_ctx->io); } // initialize the DNS struct listen_ctx *listen_ctx = &listen_ctx_list[0]; int asyncnsfd = asyncns_fd(asyncns); listen_ctx->timeout = atoi(timeout); listen_ctx->asyncns = asyncns; listen_ctx->fd = asyncnsfd; listen_ctx->method = m; listen_ctx->iface = iface; ev_io_init (&listen_ctx->io, server_resolve_cb, asyncnsfd, EV_READ); ev_io_start (loop, &listen_ctx->io); // Setup UDP if (udprelay) { LOGD("udprelay enabled."); udprelay_init(server_host[0], server_port, dns_thread_num, m, listen_ctx->timeout, iface); } // setuid if (user != NULL) run_as(user); // start ev loop ev_run (loop, 0); return 0; }