Max Lv
10 years ago
2 changed files with 393 additions and 1 deletions
Split View
Diff Options
-
3.gitignore
-
391libsodium/src/libsodium/crypto_pwhash/scryptsalsa208sha256/sse/pwhash_scryptsalsa208sha256_sse.c
@ -0,0 +1,391 @@ |
|||
/*- |
|||
* Copyright 2009 Colin Percival |
|||
* Copyright 2012,2013 Alexander Peslyak |
|||
* All rights reserved. |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* 1. Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* 2. Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in the |
|||
* documentation and/or other materials provided with the distribution. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
|||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|||
* SUCH DAMAGE. |
|||
* |
|||
* This file was originally written by Colin Percival as part of the Tarsnap |
|||
* online backup system. |
|||
*/ |
|||
|
|||
#if defined(HAVE_EMMINTRIN_H) || defined(_MSC_VER) |
|||
#if __GNUC__ |
|||
# pragma GCC target("sse2") |
|||
#endif |
|||
#include <emmintrin.h> |
|||
#if defined(__XOP__) && defined(DISABLED) |
|||
# include <x86intrin.h> |
|||
#endif |
|||
|
|||
#include <errno.h> |
|||
#include <limits.h> |
|||
#include <stdint.h> |
|||
#include <stdlib.h> |
|||
#include <string.h> |
|||
|
|||
#include "../pbkdf2-sha256.h" |
|||
#include "../sysendian.h" |
|||
#include "../crypto_scrypt.h" |
|||
|
|||
#if defined(__XOP__) && defined(DISABLED) |
|||
#define ARX(out, in1, in2, s) \ |
|||
out = _mm_xor_si128(out, _mm_roti_epi32(_mm_add_epi32(in1, in2), s)); |
|||
#else |
|||
#define ARX(out, in1, in2, s) \ |
|||
{ \ |
|||
__m128i T = _mm_add_epi32(in1, in2); \ |
|||
out = _mm_xor_si128(out, _mm_slli_epi32(T, s)); \ |
|||
out = _mm_xor_si128(out, _mm_srli_epi32(T, 32-s)); \ |
|||
} |
|||
#endif |
|||
|
|||
#define SALSA20_2ROUNDS \ |
|||
/* Operate on "columns". */ \ |
|||
ARX(X1, X0, X3, 7) \ |
|||
ARX(X2, X1, X0, 9) \ |
|||
ARX(X3, X2, X1, 13) \ |
|||
ARX(X0, X3, X2, 18) \ |
|||
\ |
|||
/* Rearrange data. */ \ |
|||
X1 = _mm_shuffle_epi32(X1, 0x93); \ |
|||
X2 = _mm_shuffle_epi32(X2, 0x4E); \ |
|||
X3 = _mm_shuffle_epi32(X3, 0x39); \ |
|||
\ |
|||
/* Operate on "rows". */ \ |
|||
ARX(X3, X0, X1, 7) \ |
|||
ARX(X2, X3, X0, 9) \ |
|||
ARX(X1, X2, X3, 13) \ |
|||
ARX(X0, X1, X2, 18) \ |
|||
\ |
|||
/* Rearrange data. */ \ |
|||
X1 = _mm_shuffle_epi32(X1, 0x39); \ |
|||
X2 = _mm_shuffle_epi32(X2, 0x4E); \ |
|||
X3 = _mm_shuffle_epi32(X3, 0x93); |
|||
|
|||
/** |
|||
* Apply the salsa20/8 core to the block provided in (X0 ... X3) ^ (Z0 ... Z3). |
|||
*/ |
|||
#define SALSA20_8_XOR(in, out) \ |
|||
{ \ |
|||
__m128i Y0 = X0 = _mm_xor_si128(X0, (in)[0]); \ |
|||
__m128i Y1 = X1 = _mm_xor_si128(X1, (in)[1]); \ |
|||
__m128i Y2 = X2 = _mm_xor_si128(X2, (in)[2]); \ |
|||
__m128i Y3 = X3 = _mm_xor_si128(X3, (in)[3]); \ |
|||
SALSA20_2ROUNDS \ |
|||
SALSA20_2ROUNDS \ |
|||
SALSA20_2ROUNDS \ |
|||
SALSA20_2ROUNDS \ |
|||
(out)[0] = X0 = _mm_add_epi32(X0, Y0); \ |
|||
(out)[1] = X1 = _mm_add_epi32(X1, Y1); \ |
|||
(out)[2] = X2 = _mm_add_epi32(X2, Y2); \ |
|||
(out)[3] = X3 = _mm_add_epi32(X3, Y3); \ |
|||
} |
|||
|
|||
/** |
|||
* blockmix_salsa8(Bin, Bout, r): |
|||
* Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r |
|||
* bytes in length; the output Bout must also be the same size. |
|||
*/ |
|||
static inline void |
|||
blockmix_salsa8(const __m128i * Bin, __m128i * Bout, size_t r) |
|||
{ |
|||
__m128i X0, X1, X2, X3; |
|||
size_t i; |
|||
|
|||
/* 1: X <-- B_{2r - 1} */ |
|||
X0 = Bin[8 * r - 4]; |
|||
X1 = Bin[8 * r - 3]; |
|||
X2 = Bin[8 * r - 2]; |
|||
X3 = Bin[8 * r - 1]; |
|||
|
|||
/* 3: X <-- H(X \xor B_i) */ |
|||
/* 4: Y_i <-- X */ |
|||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
|||
SALSA20_8_XOR(Bin, Bout) |
|||
|
|||
/* 2: for i = 0 to 2r - 1 do */ |
|||
r--; |
|||
for (i = 0; i < r;) { |
|||
/* 3: X <-- H(X \xor B_i) */ |
|||
/* 4: Y_i <-- X */ |
|||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
|||
SALSA20_8_XOR(&Bin[i * 8 + 4], &Bout[(r + i) * 4 + 4]) |
|||
|
|||
i++; |
|||
|
|||
/* 3: X <-- H(X \xor B_i) */ |
|||
/* 4: Y_i <-- X */ |
|||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
|||
SALSA20_8_XOR(&Bin[i * 8], &Bout[i * 4]) |
|||
} |
|||
|
|||
/* 3: X <-- H(X \xor B_i) */ |
|||
/* 4: Y_i <-- X */ |
|||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
|||
SALSA20_8_XOR(&Bin[i * 8 + 4], &Bout[(r + i) * 4 + 4]) |
|||
} |
|||
|
|||
#define XOR4(in) \ |
|||
X0 = _mm_xor_si128(X0, (in)[0]); \ |
|||
X1 = _mm_xor_si128(X1, (in)[1]); \ |
|||
X2 = _mm_xor_si128(X2, (in)[2]); \ |
|||
X3 = _mm_xor_si128(X3, (in)[3]); |
|||
|
|||
#define XOR4_2(in1, in2) \ |
|||
X0 = _mm_xor_si128((in1)[0], (in2)[0]); \ |
|||
X1 = _mm_xor_si128((in1)[1], (in2)[1]); \ |
|||
X2 = _mm_xor_si128((in1)[2], (in2)[2]); \ |
|||
X3 = _mm_xor_si128((in1)[3], (in2)[3]); |
|||
|
|||
static inline uint32_t |
|||
blockmix_salsa8_xor(const __m128i * Bin1, const __m128i * Bin2, __m128i * Bout, |
|||
size_t r) |
|||
{ |
|||
__m128i X0, X1, X2, X3; |
|||
size_t i; |
|||
|
|||
/* 1: X <-- B_{2r - 1} */ |
|||
XOR4_2(&Bin1[8 * r - 4], &Bin2[8 * r - 4]) |
|||
|
|||
/* 3: X <-- H(X \xor B_i) */ |
|||
/* 4: Y_i <-- X */ |
|||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
|||
XOR4(Bin1) |
|||
SALSA20_8_XOR(Bin2, Bout) |
|||
|
|||
/* 2: for i = 0 to 2r - 1 do */ |
|||
r--; |
|||
for (i = 0; i < r;) { |
|||
/* 3: X <-- H(X \xor B_i) */ |
|||
/* 4: Y_i <-- X */ |
|||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
|||
XOR4(&Bin1[i * 8 + 4]) |
|||
SALSA20_8_XOR(&Bin2[i * 8 + 4], &Bout[(r + i) * 4 + 4]) |
|||
|
|||
i++; |
|||
|
|||
/* 3: X <-- H(X \xor B_i) */ |
|||
/* 4: Y_i <-- X */ |
|||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
|||
XOR4(&Bin1[i * 8]) |
|||
SALSA20_8_XOR(&Bin2[i * 8], &Bout[i * 4]) |
|||
} |
|||
|
|||
/* 3: X <-- H(X \xor B_i) */ |
|||
/* 4: Y_i <-- X */ |
|||
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
|||
XOR4(&Bin1[i * 8 + 4]) |
|||
SALSA20_8_XOR(&Bin2[i * 8 + 4], &Bout[(r + i) * 4 + 4]) |
|||
|
|||
return _mm_cvtsi128_si32(X0); |
|||
} |
|||
|
|||
#undef ARX |
|||
#undef SALSA20_2ROUNDS |
|||
#undef SALSA20_8_XOR |
|||
#undef XOR4 |
|||
#undef XOR4_2 |
|||
|
|||
/** |
|||
* integerify(B, r): |
|||
* Return the result of parsing B_{2r-1} as a little-endian integer. |
|||
*/ |
|||
static inline uint32_t |
|||
integerify(const void * B, size_t r) |
|||
{ |
|||
return *(const uint32_t *)((uintptr_t)(B) + (2 * r - 1) * 64); |
|||
} |
|||
|
|||
/** |
|||
* smix(B, r, N, V, XY): |
|||
* Compute B = SMix_r(B, N). The input B must be 128r bytes in length; |
|||
* the temporary storage V must be 128rN bytes in length; the temporary |
|||
* storage XY must be 256r + 64 bytes in length. The value N must be a |
|||
* power of 2 greater than 1. The arrays B, V, and XY must be aligned to a |
|||
* multiple of 64 bytes. |
|||
*/ |
|||
static void |
|||
smix(uint8_t * B, size_t r, uint32_t N, void * V, void * XY) |
|||
{ |
|||
size_t s = 128 * r; |
|||
__m128i * X = (__m128i *) V, * Y; |
|||
uint32_t * X32 = (uint32_t *) V; |
|||
uint32_t i, j; |
|||
size_t k; |
|||
|
|||
/* 1: X <-- B */ |
|||
/* 3: V_i <-- X */ |
|||
for (k = 0; k < 2 * r; k++) { |
|||
for (i = 0; i < 16; i++) { |
|||
X32[k * 16 + i] = |
|||
le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]); |
|||
} |
|||
} |
|||
|
|||
/* 2: for i = 0 to N - 1 do */ |
|||
for (i = 1; i < N - 1; i += 2) { |
|||
/* 4: X <-- H(X) */ |
|||
/* 3: V_i <-- X */ |
|||
Y = (__m128i *)((uintptr_t)(V) + i * s); |
|||
blockmix_salsa8(X, Y, r); |
|||
|
|||
/* 4: X <-- H(X) */ |
|||
/* 3: V_i <-- X */ |
|||
X = (__m128i *)((uintptr_t)(V) + (i + 1) * s); |
|||
blockmix_salsa8(Y, X, r); |
|||
} |
|||
|
|||
/* 4: X <-- H(X) */ |
|||
/* 3: V_i <-- X */ |
|||
Y = (__m128i *)((uintptr_t)(V) + i * s); |
|||
blockmix_salsa8(X, Y, r); |
|||
|
|||
/* 4: X <-- H(X) */ |
|||
/* 3: V_i <-- X */ |
|||
X = (__m128i *) XY; |
|||
blockmix_salsa8(Y, X, r); |
|||
|
|||
X32 = (uint32_t *) XY; |
|||
Y = (__m128i *)((uintptr_t)(XY) + s); |
|||
|
|||
/* 7: j <-- Integerify(X) mod N */ |
|||
j = integerify(X, r) & (N - 1); |
|||
|
|||
/* 6: for i = 0 to N - 1 do */ |
|||
for (i = 0; i < N; i += 2) { |
|||
__m128i * V_j = (__m128i *)((uintptr_t)(V) + j * s); |
|||
|
|||
/* 8: X <-- H(X \xor V_j) */ |
|||
/* 7: j <-- Integerify(X) mod N */ |
|||
j = blockmix_salsa8_xor(X, V_j, Y, r) & (N - 1); |
|||
V_j = (__m128i *)((uintptr_t)(V) + j * s); |
|||
|
|||
/* 8: X <-- H(X \xor V_j) */ |
|||
/* 7: j <-- Integerify(X) mod N */ |
|||
j = blockmix_salsa8_xor(Y, V_j, X, r) & (N - 1); |
|||
} |
|||
|
|||
/* 10: B' <-- X */ |
|||
for (k = 0; k < 2 * r; k++) { |
|||
for (i = 0; i < 16; i++) { |
|||
le32enc(&B[(k * 16 + (i * 5 % 16)) * 4], |
|||
X32[k * 16 + i]); |
|||
} |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* escrypt_kdf(local, passwd, passwdlen, salt, saltlen, |
|||
* N, r, p, buf, buflen): |
|||
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, |
|||
* p, buflen) and write the result into buf. The parameters r, p, and buflen |
|||
* must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N |
|||
* must be a power of 2 greater than 1. |
|||
* |
|||
* Return 0 on success; or -1 on error. |
|||
*/ |
|||
int |
|||
escrypt_kdf_sse(escrypt_local_t * local, |
|||
const uint8_t * passwd, size_t passwdlen, |
|||
const uint8_t * salt, size_t saltlen, |
|||
uint64_t N, uint32_t _r, uint32_t _p, |
|||
uint8_t * buf, size_t buflen) |
|||
{ |
|||
size_t B_size, V_size, XY_size, need; |
|||
uint8_t * B; |
|||
uint32_t * V, * XY; |
|||
size_t r = _r, p = _p; |
|||
uint32_t i; |
|||
|
|||
/* Sanity-check parameters. */ |
|||
#if SIZE_MAX > UINT32_MAX |
|||
if (buflen > (((uint64_t)(1) << 32) - 1) * 32) { |
|||
errno = EFBIG; |
|||
return -1; |
|||
} |
|||
#endif |
|||
if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) { |
|||
errno = EFBIG; |
|||
return -1; |
|||
} |
|||
if (N > UINT32_MAX) { |
|||
errno = EFBIG; |
|||
return -1; |
|||
} |
|||
if (((N & (N - 1)) != 0) || (N < 2)) { |
|||
errno = EINVAL; |
|||
return -1; |
|||
} |
|||
if (r == 0 || p == 0) { |
|||
errno = EINVAL; |
|||
return -1; |
|||
} |
|||
if ((r > SIZE_MAX / 128 / p) || |
|||
#if SIZE_MAX / 256 <= UINT32_MAX |
|||
(r > SIZE_MAX / 256) || |
|||
#endif |
|||
(N > SIZE_MAX / 128 / r)) { |
|||
errno = ENOMEM; |
|||
return -1; |
|||
} |
|||
|
|||
/* Allocate memory. */ |
|||
B_size = (size_t)128 * r * p; |
|||
V_size = (size_t)128 * r * N; |
|||
need = B_size + V_size; |
|||
if (need < V_size) { |
|||
errno = ENOMEM; |
|||
return -1; |
|||
} |
|||
XY_size = (size_t)256 * r + 64; |
|||
need += XY_size; |
|||
if (need < XY_size) { |
|||
errno = ENOMEM; |
|||
return -1; |
|||
} |
|||
if (local->size < need) { |
|||
if (free_region(local)) |
|||
return -1; /* LCOV_EXCL_LINE */ |
|||
if (!alloc_region(local, need)) |
|||
return -1; /* LCOV_EXCL_LINE */ |
|||
} |
|||
B = (uint8_t *)local->aligned; |
|||
V = (uint32_t *)((uint8_t *)B + B_size); |
|||
XY = (uint32_t *)((uint8_t *)V + V_size); |
|||
|
|||
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ |
|||
PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, B_size); |
|||
|
|||
/* 2: for i = 0 to p - 1 do */ |
|||
for (i = 0; i < p; i++) { |
|||
/* 3: B_i <-- MF(B_i, N) */ |
|||
smix(&B[(size_t)128 * i * r], r, (uint32_t) N, V, XY); |
|||
} |
|||
|
|||
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ |
|||
PBKDF2_SHA256(passwd, passwdlen, B, B_size, 1, buf, buflen); |
|||
|
|||
/* Success! */ |
|||
return 0; |
|||
} |
|||
#endif |
Write
Preview
Loading…
Cancel
Save