Max Lv
10 years ago
2 changed files with 393 additions and 1 deletions
Unified View
Diff Options
-
3.gitignore
-
391libsodium/src/libsodium/crypto_pwhash/scryptsalsa208sha256/sse/pwhash_scryptsalsa208sha256_sse.c
@ -0,0 +1,391 @@ |
|||||
|
/*- |
||||
|
* Copyright 2009 Colin Percival |
||||
|
* Copyright 2012,2013 Alexander Peslyak |
||||
|
* All rights reserved. |
||||
|
* |
||||
|
* Redistribution and use in source and binary forms, with or without |
||||
|
* modification, are permitted provided that the following conditions |
||||
|
* are met: |
||||
|
* 1. Redistributions of source code must retain the above copyright |
||||
|
* notice, this list of conditions and the following disclaimer. |
||||
|
* 2. Redistributions in binary form must reproduce the above copyright |
||||
|
* notice, this list of conditions and the following disclaimer in the |
||||
|
* documentation and/or other materials provided with the distribution. |
||||
|
* |
||||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
||||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
||||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
||||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
||||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
||||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
||||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
||||
|
* SUCH DAMAGE. |
||||
|
* |
||||
|
* This file was originally written by Colin Percival as part of the Tarsnap |
||||
|
* online backup system. |
||||
|
*/ |
||||
|
|
||||
|
#if defined(HAVE_EMMINTRIN_H) || defined(_MSC_VER) |
||||
|
#if __GNUC__ |
||||
|
# pragma GCC target("sse2") |
||||
|
#endif |
||||
|
#include <emmintrin.h> |
||||
|
#if defined(__XOP__) && defined(DISABLED) |
||||
|
# include <x86intrin.h> |
||||
|
#endif |
||||
|
|
||||
|
#include <errno.h> |
||||
|
#include <limits.h> |
||||
|
#include <stdint.h> |
||||
|
#include <stdlib.h> |
||||
|
#include <string.h> |
||||
|
|
||||
|
#include "../pbkdf2-sha256.h" |
||||
|
#include "../sysendian.h" |
||||
|
#include "../crypto_scrypt.h" |
||||
|
|
||||
|
#if defined(__XOP__) && defined(DISABLED) |
||||
|
#define ARX(out, in1, in2, s) \ |
||||
|
out = _mm_xor_si128(out, _mm_roti_epi32(_mm_add_epi32(in1, in2), s)); |
||||
|
#else |
||||
|
#define ARX(out, in1, in2, s) \ |
||||
|
{ \ |
||||
|
__m128i T = _mm_add_epi32(in1, in2); \ |
||||
|
out = _mm_xor_si128(out, _mm_slli_epi32(T, s)); \ |
||||
|
out = _mm_xor_si128(out, _mm_srli_epi32(T, 32-s)); \ |
||||
|
} |
||||
|
#endif |
||||
|
|
||||
|
#define SALSA20_2ROUNDS \ |
||||
|
/* Operate on "columns". */ \ |
||||
|
ARX(X1, X0, X3, 7) \ |
||||
|
ARX(X2, X1, X0, 9) \ |
||||
|
ARX(X3, X2, X1, 13) \ |
||||
|
ARX(X0, X3, X2, 18) \ |
||||
|
\ |
||||
|
/* Rearrange data. */ \ |
||||
|
X1 = _mm_shuffle_epi32(X1, 0x93); \ |
||||
|
X2 = _mm_shuffle_epi32(X2, 0x4E); \ |
||||
|
X3 = _mm_shuffle_epi32(X3, 0x39); \ |
||||
|
\ |
||||
|
/* Operate on "rows". */ \ |
||||
|
ARX(X3, X0, X1, 7) \ |
||||
|
ARX(X2, X3, X0, 9) \ |
||||
|
ARX(X1, X2, X3, 13) \ |
||||
|
ARX(X0, X1, X2, 18) \ |
||||
|
\ |
||||
|
/* Rearrange data. */ \ |
||||
|
X1 = _mm_shuffle_epi32(X1, 0x39); \ |
||||
|
X2 = _mm_shuffle_epi32(X2, 0x4E); \ |
||||
|
X3 = _mm_shuffle_epi32(X3, 0x93); |
||||
|
|
||||
|
/** |
||||
|
* Apply the salsa20/8 core to the block provided in (X0 ... X3) ^ (Z0 ... Z3). |
||||
|
*/ |
||||
|
#define SALSA20_8_XOR(in, out) \ |
||||
|
{ \ |
||||
|
__m128i Y0 = X0 = _mm_xor_si128(X0, (in)[0]); \ |
||||
|
__m128i Y1 = X1 = _mm_xor_si128(X1, (in)[1]); \ |
||||
|
__m128i Y2 = X2 = _mm_xor_si128(X2, (in)[2]); \ |
||||
|
__m128i Y3 = X3 = _mm_xor_si128(X3, (in)[3]); \ |
||||
|
SALSA20_2ROUNDS \ |
||||
|
SALSA20_2ROUNDS \ |
||||
|
SALSA20_2ROUNDS \ |
||||
|
SALSA20_2ROUNDS \ |
||||
|
(out)[0] = X0 = _mm_add_epi32(X0, Y0); \ |
||||
|
(out)[1] = X1 = _mm_add_epi32(X1, Y1); \ |
||||
|
(out)[2] = X2 = _mm_add_epi32(X2, Y2); \ |
||||
|
(out)[3] = X3 = _mm_add_epi32(X3, Y3); \ |
||||
|
} |
||||
|
|
||||
|
/** |
||||
|
* blockmix_salsa8(Bin, Bout, r): |
||||
|
* Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r |
||||
|
* bytes in length; the output Bout must also be the same size. |
||||
|
*/ |
||||
|
static inline void |
||||
|
blockmix_salsa8(const __m128i * Bin, __m128i * Bout, size_t r) |
||||
|
{ |
||||
|
__m128i X0, X1, X2, X3; |
||||
|
size_t i; |
||||
|
|
||||
|
/* 1: X <-- B_{2r - 1} */ |
||||
|
X0 = Bin[8 * r - 4]; |
||||
|
X1 = Bin[8 * r - 3]; |
||||
|
X2 = Bin[8 * r - 2]; |
||||
|
X3 = Bin[8 * r - 1]; |
||||
|
|
||||
|
/* 3: X <-- H(X \xor B_i) */ |
||||
|
/* 4: Y_i <-- X */ |
||||
|
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
||||
|
SALSA20_8_XOR(Bin, Bout) |
||||
|
|
||||
|
/* 2: for i = 0 to 2r - 1 do */ |
||||
|
r--; |
||||
|
for (i = 0; i < r;) { |
||||
|
/* 3: X <-- H(X \xor B_i) */ |
||||
|
/* 4: Y_i <-- X */ |
||||
|
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
||||
|
SALSA20_8_XOR(&Bin[i * 8 + 4], &Bout[(r + i) * 4 + 4]) |
||||
|
|
||||
|
i++; |
||||
|
|
||||
|
/* 3: X <-- H(X \xor B_i) */ |
||||
|
/* 4: Y_i <-- X */ |
||||
|
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
||||
|
SALSA20_8_XOR(&Bin[i * 8], &Bout[i * 4]) |
||||
|
} |
||||
|
|
||||
|
/* 3: X <-- H(X \xor B_i) */ |
||||
|
/* 4: Y_i <-- X */ |
||||
|
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
||||
|
SALSA20_8_XOR(&Bin[i * 8 + 4], &Bout[(r + i) * 4 + 4]) |
||||
|
} |
||||
|
|
||||
|
#define XOR4(in) \ |
||||
|
X0 = _mm_xor_si128(X0, (in)[0]); \ |
||||
|
X1 = _mm_xor_si128(X1, (in)[1]); \ |
||||
|
X2 = _mm_xor_si128(X2, (in)[2]); \ |
||||
|
X3 = _mm_xor_si128(X3, (in)[3]); |
||||
|
|
||||
|
#define XOR4_2(in1, in2) \ |
||||
|
X0 = _mm_xor_si128((in1)[0], (in2)[0]); \ |
||||
|
X1 = _mm_xor_si128((in1)[1], (in2)[1]); \ |
||||
|
X2 = _mm_xor_si128((in1)[2], (in2)[2]); \ |
||||
|
X3 = _mm_xor_si128((in1)[3], (in2)[3]); |
||||
|
|
||||
|
static inline uint32_t |
||||
|
blockmix_salsa8_xor(const __m128i * Bin1, const __m128i * Bin2, __m128i * Bout, |
||||
|
size_t r) |
||||
|
{ |
||||
|
__m128i X0, X1, X2, X3; |
||||
|
size_t i; |
||||
|
|
||||
|
/* 1: X <-- B_{2r - 1} */ |
||||
|
XOR4_2(&Bin1[8 * r - 4], &Bin2[8 * r - 4]) |
||||
|
|
||||
|
/* 3: X <-- H(X \xor B_i) */ |
||||
|
/* 4: Y_i <-- X */ |
||||
|
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
||||
|
XOR4(Bin1) |
||||
|
SALSA20_8_XOR(Bin2, Bout) |
||||
|
|
||||
|
/* 2: for i = 0 to 2r - 1 do */ |
||||
|
r--; |
||||
|
for (i = 0; i < r;) { |
||||
|
/* 3: X <-- H(X \xor B_i) */ |
||||
|
/* 4: Y_i <-- X */ |
||||
|
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
||||
|
XOR4(&Bin1[i * 8 + 4]) |
||||
|
SALSA20_8_XOR(&Bin2[i * 8 + 4], &Bout[(r + i) * 4 + 4]) |
||||
|
|
||||
|
i++; |
||||
|
|
||||
|
/* 3: X <-- H(X \xor B_i) */ |
||||
|
/* 4: Y_i <-- X */ |
||||
|
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
||||
|
XOR4(&Bin1[i * 8]) |
||||
|
SALSA20_8_XOR(&Bin2[i * 8], &Bout[i * 4]) |
||||
|
} |
||||
|
|
||||
|
/* 3: X <-- H(X \xor B_i) */ |
||||
|
/* 4: Y_i <-- X */ |
||||
|
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
||||
|
XOR4(&Bin1[i * 8 + 4]) |
||||
|
SALSA20_8_XOR(&Bin2[i * 8 + 4], &Bout[(r + i) * 4 + 4]) |
||||
|
|
||||
|
return _mm_cvtsi128_si32(X0); |
||||
|
} |
||||
|
|
||||
|
#undef ARX |
||||
|
#undef SALSA20_2ROUNDS |
||||
|
#undef SALSA20_8_XOR |
||||
|
#undef XOR4 |
||||
|
#undef XOR4_2 |
||||
|
|
||||
|
/** |
||||
|
* integerify(B, r): |
||||
|
* Return the result of parsing B_{2r-1} as a little-endian integer. |
||||
|
*/ |
||||
|
static inline uint32_t |
||||
|
integerify(const void * B, size_t r) |
||||
|
{ |
||||
|
return *(const uint32_t *)((uintptr_t)(B) + (2 * r - 1) * 64); |
||||
|
} |
||||
|
|
||||
|
/** |
||||
|
* smix(B, r, N, V, XY): |
||||
|
* Compute B = SMix_r(B, N). The input B must be 128r bytes in length; |
||||
|
* the temporary storage V must be 128rN bytes in length; the temporary |
||||
|
* storage XY must be 256r + 64 bytes in length. The value N must be a |
||||
|
* power of 2 greater than 1. The arrays B, V, and XY must be aligned to a |
||||
|
* multiple of 64 bytes. |
||||
|
*/ |
||||
|
static void |
||||
|
smix(uint8_t * B, size_t r, uint32_t N, void * V, void * XY) |
||||
|
{ |
||||
|
size_t s = 128 * r; |
||||
|
__m128i * X = (__m128i *) V, * Y; |
||||
|
uint32_t * X32 = (uint32_t *) V; |
||||
|
uint32_t i, j; |
||||
|
size_t k; |
||||
|
|
||||
|
/* 1: X <-- B */ |
||||
|
/* 3: V_i <-- X */ |
||||
|
for (k = 0; k < 2 * r; k++) { |
||||
|
for (i = 0; i < 16; i++) { |
||||
|
X32[k * 16 + i] = |
||||
|
le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]); |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
/* 2: for i = 0 to N - 1 do */ |
||||
|
for (i = 1; i < N - 1; i += 2) { |
||||
|
/* 4: X <-- H(X) */ |
||||
|
/* 3: V_i <-- X */ |
||||
|
Y = (__m128i *)((uintptr_t)(V) + i * s); |
||||
|
blockmix_salsa8(X, Y, r); |
||||
|
|
||||
|
/* 4: X <-- H(X) */ |
||||
|
/* 3: V_i <-- X */ |
||||
|
X = (__m128i *)((uintptr_t)(V) + (i + 1) * s); |
||||
|
blockmix_salsa8(Y, X, r); |
||||
|
} |
||||
|
|
||||
|
/* 4: X <-- H(X) */ |
||||
|
/* 3: V_i <-- X */ |
||||
|
Y = (__m128i *)((uintptr_t)(V) + i * s); |
||||
|
blockmix_salsa8(X, Y, r); |
||||
|
|
||||
|
/* 4: X <-- H(X) */ |
||||
|
/* 3: V_i <-- X */ |
||||
|
X = (__m128i *) XY; |
||||
|
blockmix_salsa8(Y, X, r); |
||||
|
|
||||
|
X32 = (uint32_t *) XY; |
||||
|
Y = (__m128i *)((uintptr_t)(XY) + s); |
||||
|
|
||||
|
/* 7: j <-- Integerify(X) mod N */ |
||||
|
j = integerify(X, r) & (N - 1); |
||||
|
|
||||
|
/* 6: for i = 0 to N - 1 do */ |
||||
|
for (i = 0; i < N; i += 2) { |
||||
|
__m128i * V_j = (__m128i *)((uintptr_t)(V) + j * s); |
||||
|
|
||||
|
/* 8: X <-- H(X \xor V_j) */ |
||||
|
/* 7: j <-- Integerify(X) mod N */ |
||||
|
j = blockmix_salsa8_xor(X, V_j, Y, r) & (N - 1); |
||||
|
V_j = (__m128i *)((uintptr_t)(V) + j * s); |
||||
|
|
||||
|
/* 8: X <-- H(X \xor V_j) */ |
||||
|
/* 7: j <-- Integerify(X) mod N */ |
||||
|
j = blockmix_salsa8_xor(Y, V_j, X, r) & (N - 1); |
||||
|
} |
||||
|
|
||||
|
/* 10: B' <-- X */ |
||||
|
for (k = 0; k < 2 * r; k++) { |
||||
|
for (i = 0; i < 16; i++) { |
||||
|
le32enc(&B[(k * 16 + (i * 5 % 16)) * 4], |
||||
|
X32[k * 16 + i]); |
||||
|
} |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
/** |
||||
|
* escrypt_kdf(local, passwd, passwdlen, salt, saltlen, |
||||
|
* N, r, p, buf, buflen): |
||||
|
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, |
||||
|
* p, buflen) and write the result into buf. The parameters r, p, and buflen |
||||
|
* must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N |
||||
|
* must be a power of 2 greater than 1. |
||||
|
* |
||||
|
* Return 0 on success; or -1 on error. |
||||
|
*/ |
||||
|
int |
||||
|
escrypt_kdf_sse(escrypt_local_t * local, |
||||
|
const uint8_t * passwd, size_t passwdlen, |
||||
|
const uint8_t * salt, size_t saltlen, |
||||
|
uint64_t N, uint32_t _r, uint32_t _p, |
||||
|
uint8_t * buf, size_t buflen) |
||||
|
{ |
||||
|
size_t B_size, V_size, XY_size, need; |
||||
|
uint8_t * B; |
||||
|
uint32_t * V, * XY; |
||||
|
size_t r = _r, p = _p; |
||||
|
uint32_t i; |
||||
|
|
||||
|
/* Sanity-check parameters. */ |
||||
|
#if SIZE_MAX > UINT32_MAX |
||||
|
if (buflen > (((uint64_t)(1) << 32) - 1) * 32) { |
||||
|
errno = EFBIG; |
||||
|
return -1; |
||||
|
} |
||||
|
#endif |
||||
|
if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) { |
||||
|
errno = EFBIG; |
||||
|
return -1; |
||||
|
} |
||||
|
if (N > UINT32_MAX) { |
||||
|
errno = EFBIG; |
||||
|
return -1; |
||||
|
} |
||||
|
if (((N & (N - 1)) != 0) || (N < 2)) { |
||||
|
errno = EINVAL; |
||||
|
return -1; |
||||
|
} |
||||
|
if (r == 0 || p == 0) { |
||||
|
errno = EINVAL; |
||||
|
return -1; |
||||
|
} |
||||
|
if ((r > SIZE_MAX / 128 / p) || |
||||
|
#if SIZE_MAX / 256 <= UINT32_MAX |
||||
|
(r > SIZE_MAX / 256) || |
||||
|
#endif |
||||
|
(N > SIZE_MAX / 128 / r)) { |
||||
|
errno = ENOMEM; |
||||
|
return -1; |
||||
|
} |
||||
|
|
||||
|
/* Allocate memory. */ |
||||
|
B_size = (size_t)128 * r * p; |
||||
|
V_size = (size_t)128 * r * N; |
||||
|
need = B_size + V_size; |
||||
|
if (need < V_size) { |
||||
|
errno = ENOMEM; |
||||
|
return -1; |
||||
|
} |
||||
|
XY_size = (size_t)256 * r + 64; |
||||
|
need += XY_size; |
||||
|
if (need < XY_size) { |
||||
|
errno = ENOMEM; |
||||
|
return -1; |
||||
|
} |
||||
|
if (local->size < need) { |
||||
|
if (free_region(local)) |
||||
|
return -1; /* LCOV_EXCL_LINE */ |
||||
|
if (!alloc_region(local, need)) |
||||
|
return -1; /* LCOV_EXCL_LINE */ |
||||
|
} |
||||
|
B = (uint8_t *)local->aligned; |
||||
|
V = (uint32_t *)((uint8_t *)B + B_size); |
||||
|
XY = (uint32_t *)((uint8_t *)V + V_size); |
||||
|
|
||||
|
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ |
||||
|
PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, B_size); |
||||
|
|
||||
|
/* 2: for i = 0 to p - 1 do */ |
||||
|
for (i = 0; i < p; i++) { |
||||
|
/* 3: B_i <-- MF(B_i, N) */ |
||||
|
smix(&B[(size_t)128 * i * r], r, (uint32_t) N, V, XY); |
||||
|
} |
||||
|
|
||||
|
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ |
||||
|
PBKDF2_SHA256(passwd, passwdlen, B, B_size, 1, buf, buflen); |
||||
|
|
||||
|
/* Success! */ |
||||
|
return 0; |
||||
|
} |
||||
|
#endif |
Write
Preview
Loading…
Cancel
Save