|
|
#!/usr/bin/env python3 # # Usage: ./update_plots.py # Updates plots from the Plotly section so they show the latest data.
from pathlib import Path import datetime import pandas as pd from plotly.express import line import plotly.graph_objects as go import re
def main(): print('Updating covid deaths...') update_covid_deaths() print('Updating covid cases...') update_confirmed_cases()
def update_covid_deaths(): covid = pd.read_csv('https://covid.ourworldindata.org/data/owid-covid-data.csv', usecols=['iso_code', 'date', 'total_deaths', 'population']) continents = pd.read_csv('https://gist.githubusercontent.com/stevewithington/20a69c0b6d2ff' '846ea5d35e5fc47f26c/raw/country-and-continent-codes-list-csv.csv', usecols=['Three_Letter_Country_Code', 'Continent_Name']) df = pd.merge(covid, continents, left_on='iso_code', right_on='Three_Letter_Country_Code') df = df.groupby(['Continent_Name', 'date']).sum().reset_index() df['Total Deaths per Million'] = round(df.total_deaths * 1e6 / df.population) today = str(datetime.date.today()) df = df[('2020-02-22' < df.date) & (df.date < today)] df = df.rename({'date': 'Date', 'Continent_Name': 'Continent'}, axis='columns') gb = df.groupby('Continent') df['Max Total Deaths'] = gb[['Total Deaths per Million']].transform('max') df = df.sort_values(['Max Total Deaths', 'Date'], ascending=[False, True]) f = line(df, x='Date', y='Total Deaths per Million', color='Continent') f.update_layout(margin=dict(t=24, b=0), paper_bgcolor='rgba(0, 0, 0, 0)') update_file('covid_deaths.js', f) f.layout.paper_bgcolor = 'rgb(255, 255, 255)' write_to_png_file('covid_deaths.png', f, width=960, height=340)
def update_confirmed_cases(): def main(): df = wrangle_data(*scrape_data()) f = get_figure(df) update_file('covid_cases.js', f) f.layout.paper_bgcolor = 'rgb(255, 255, 255)' write_to_png_file('covid_cases.png', f, width=960, height=315)
def scrape_data(): def scrape_covid(): url = 'https://covid.ourworldindata.org/data/owid-covid-data.csv' df = pd.read_csv(url, usecols=['location', 'date', 'total_cases']) return df[df.location == 'World'].set_index('date').total_cases def scrape_yahoo(slug): url = f'https://query1.finance.yahoo.com/v7/finance/download/{slug}' + \ '?period1=1579651200&period2=9999999999&interval=1d&events=history' df = pd.read_csv(url, usecols=['Date', 'Close']) return df.set_index('Date').Close out = [scrape_covid(), scrape_yahoo('BTC-USD'), scrape_yahoo('GC=F'), scrape_yahoo('^DJI')] return map(pd.Series.rename, out, ['Total Cases', 'Bitcoin', 'Gold', 'Dow Jones'])
def wrangle_data(covid, bitcoin, gold, dow): df = pd.concat([dow, gold, bitcoin], axis=1) # Joins columns on dates. df = df.sort_index().interpolate() # Sorts by date and interpolates NaN-s. yesterday = str(datetime.date.today() - datetime.timedelta(1)) df = df.loc['2020-02-23':yesterday] # Discards rows before '2020-02-23'. df = round((df / df.iloc[0]) * 100, 2) # Calculates percentages relative to day 1 df = df.join(covid) # Adds column with covid cases. return df.sort_values(df.index[-1], axis=1) # Sorts columns by last day's value.
def get_figure(df): figure = go.Figure() for col_name in reversed(df.columns): yaxis = 'y1' if col_name == 'Total Cases' else 'y2' colors = {'Total Cases': '#EF553B', 'Bitcoin': '#636efa', 'Gold': '#FFA15A', 'Dow Jones': '#00cc96'} trace = go.Scatter(x=df.index, y=df[col_name], name=col_name, yaxis=yaxis, line=dict(color=colors[col_name])) figure.add_trace(trace) figure.update_layout( yaxis1=dict(title='Total Cases', rangemode='tozero'), yaxis2=dict(title='%', rangemode='tozero', overlaying='y', side='right'), legend=dict(x=1.1), margin=dict(t=24, b=0), paper_bgcolor='rgba(0, 0, 0, 0)' ) return figure
main()
### ## UTIL #
def update_file(filename, figure): lines = read_file(filename) f_json = figure.to_json(pretty=True).replace('\n', '\n ') out = lines[:6] + [f' {f_json}\n', ' )\n', '};\n'] write_to_file(filename, out)
def read_file(filename): p = Path(__file__).resolve().parent / filename with open(p, encoding='utf-8') as file: return file.readlines()
def write_to_file(filename, lines): p = Path(__file__).resolve().parent / filename with open(p, 'w', encoding='utf-8') as file: file.writelines(lines)
def write_to_png_file(filename, figure, width, height): p = Path(__file__).resolve().parent / filename figure.write_image(str(p), width=width, height=height)
if __name__ == '__main__': main()
|