You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

920 lines
23 KiB

#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <locale.h>
#include <signal.h>
#include <string.h>
#include <strings.h>
#include <time.h>
#include <unistd.h>
#ifndef __MINGW32__
#include <arpa/inet.h>
#include <errno.h>
#include <netdb.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <pthread.h>
#endif
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#if defined(HAVE_SYS_IOCTL_H) && defined(HAVE_NET_IF_H) && defined(__linux__)
#include <net/if.h>
#include <sys/ioctl.h>
#define SET_INTERFACE
#endif
#ifdef __MINGW32__
#include "win32.h"
#endif
#include "utils.h"
#include "udprelay.h"
#include "cache.h"
#ifdef UDPRELAY_REMOTE
#ifdef UDPRELAY_LOCAL
#error "UDPRELAY_REMOTE and UDPRELAY_LOCAL should not be both defined"
#endif
#endif
#ifndef EAGAIN
#define EAGAIN EWOULDBLOCK
#endif
#ifndef EWOULDBLOCK
#define EWOULDBLOCK EAGAIN
#endif
#define BUF_SIZE MAX_UDP_PACKET_SIZE
extern int verbose;
#ifndef __MINGW32__
static int setnonblocking(int fd)
{
int flags;
if (-1 ==(flags = fcntl(fd, F_GETFL, 0)))
flags = 0;
return fcntl(fd, F_SETFL, flags | O_NONBLOCK);
}
#endif
#ifdef SET_INTERFACE
static int setinterface(int socket_fd, const char* interface_name)
{
struct ifreq interface;
memset(&interface, 0, sizeof(interface));
strncpy(interface.ifr_name, interface_name, IFNAMSIZ);
int res = setsockopt(socket_fd, SOL_SOCKET, SO_BINDTODEVICE, &interface, sizeof(struct ifreq));
return res;
}
#endif
static char *hash_key(const char *header, const int header_len, const struct sockaddr *addr)
{
char key[384];
// calculate hash key
// assert header_len < 256
memset(key, 0, 384);
memcpy(key, addr, sizeof(struct sockaddr));
memcpy(key + sizeof(struct sockaddr), header, header_len);
return (char*) enc_md5((const uint8_t *)key, sizeof(struct sockaddr) + header_len, NULL);
}
static int parse_udprealy_header(const char* buf, const int buf_len, char *host, char *port)
{
const uint8_t atyp = *(uint8_t*)buf;
int offset = 1;
// get remote addr and port
if (atyp == 1)
{
// IP V4
size_t in_addr_len = sizeof(struct in_addr);
if (buf_len > in_addr_len)
{
if (host != NULL)
{
inet_ntop(AF_INET, (const void *)(buf + offset),
host, INET_ADDRSTRLEN);
}
offset += in_addr_len;
}
}
else if (atyp == 3)
{
// Domain name
uint8_t name_len = *(uint8_t *)(buf + offset);
if (name_len < buf_len && name_len < 255 && name_len > 0)
{
if (host != NULL)
{
memcpy(host, buf + offset + 1, name_len);
}
offset += name_len + 1;
}
}
else if (atyp == 4)
{
// IP V6
size_t in6_addr_len = sizeof(struct in6_addr);
if (buf_len > in6_addr_len)
{
if (host != NULL)
{
inet_ntop(AF_INET6, (const void*)(buf + offset),
host, INET6_ADDRSTRLEN);
}
offset += in6_addr_len;
}
}
if (offset == 1)
{
LOGE("invalid header with addr type %d", atyp);
return 0;
}
if (port != NULL)
{
sprintf(port, "%d", ntohs(*(uint16_t *)(buf + offset)));
}
offset += 2;
return offset;
}
static char *get_addr_str(const struct sockaddr *sa)
{
static char s[SS_ADDRSTRLEN];
memset(s, 0, SS_ADDRSTRLEN);
char addr[INET6_ADDRSTRLEN] = {0};
char port[PORTSTRLEN] = {0};
uint16_t p;
switch(sa->sa_family)
{
case AF_INET:
inet_ntop(AF_INET, &(((struct sockaddr_in *)sa)->sin_addr),
addr, INET_ADDRSTRLEN);
p = ntohs(((struct sockaddr_in *)sa)->sin_port);
sprintf(port, "%d", p);
break;
case AF_INET6:
inet_ntop(AF_INET6, &(((struct sockaddr_in6 *)sa)->sin6_addr),
addr, INET6_ADDRSTRLEN);
p = ntohs(((struct sockaddr_in *)sa)->sin_port);
sprintf(port, "%d", p);
break;
default:
strncpy(s, "Unknown AF", SS_ADDRSTRLEN);
}
int addr_len = strlen(addr);
int port_len = strlen(port);
memcpy(s, addr, addr_len);
memcpy(s + addr_len + 1, port, port_len);
s[addr_len] = ':';
return s;
}
int create_remote_socket(int ipv6)
{
int remote_sock;
if (ipv6)
{
// Try to bind IPv6 first
struct sockaddr_in6 addr;
memset(&addr, 0, sizeof(struct sockaddr_in6));
addr.sin6_family = AF_INET6;
addr.sin6_addr = in6addr_any;
addr.sin6_port = htons(0);
remote_sock = socket(AF_INET6, SOCK_DGRAM , 0);
if (remote_sock != -1)
{
if (bind(remote_sock, (struct sockaddr *)&addr, sizeof(addr)) != -1)
{
return remote_sock;
}
}
}
// Then bind to IPv4
struct sockaddr_in addr;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(INADDR_ANY);
addr.sin_port = htons(0);
remote_sock = socket(AF_INET, SOCK_DGRAM , 0);
if (remote_sock == -1)
{
ERROR("Cannot create socket.");
return -1;
}
if (bind(remote_sock, (struct sockaddr *)&addr, sizeof(addr)) != 0)
{
FATAL("Cannot bind remote.");
return -1;
}
return remote_sock;
}
int create_server_socket(const char *host, const char *port)
{
struct addrinfo hints;
struct addrinfo *result, *rp;
int s, server_sock;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC; /* Return IPv4 and IPv6 choices */
hints.ai_socktype = SOCK_DGRAM; /* We want a UDP socket */
s = getaddrinfo(host, port, &hints, &result);
if (s != 0)
{
LOGE("getaddrinfo: %s", gai_strerror(s));
return -1;
}
for (rp = result; rp != NULL; rp = rp->ai_next)
{
server_sock = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
if (server_sock == -1)
continue;
int opt = 1;
setsockopt(server_sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
#ifdef SO_NOSIGPIPE
setsockopt(server_sock, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt));
#endif
s = bind(server_sock, rp->ai_addr, rp->ai_addrlen);
if (s == 0)
{
/* We managed to bind successfully! */
break;
}
else
{
ERROR("bind");
}
close(server_sock);
}
if (rp == NULL)
{
LOGE("Could not bind");
return -1;
}
freeaddrinfo(result);
return server_sock;
}
struct remote_ctx *new_remote(int fd, struct server_ctx *server_ctx)
{
struct remote_ctx *ctx = malloc(sizeof(struct remote_ctx));
memset(ctx, 0, sizeof(struct remote_ctx));
ctx->fd = fd;
ctx->server_ctx = server_ctx;
ev_io_init(&ctx->io, remote_recv_cb, fd, EV_READ);
ev_timer_init(&ctx->watcher, remote_timeout_cb, server_ctx->timeout, server_ctx->timeout * 5);
return ctx;
}
struct server_ctx * new_server_ctx(int fd)
{
struct server_ctx *ctx = malloc(sizeof(struct server_ctx));
memset(ctx, 0, sizeof(struct server_ctx));
ctx->fd = fd;
ev_io_init(&ctx->io, server_recv_cb, fd, EV_READ);
return ctx;
}
#ifdef UDPRELAY_REMOTE
struct query_ctx *new_query_ctx(asyncns_query_t *query,
const char *buf, const int buf_len)
{
struct query_ctx *ctx = malloc(sizeof(struct query_ctx));
memset(ctx, 0, sizeof(struct query_ctx));
ctx->buf = malloc(buf_len);
ctx->buf_len = buf_len;
memcpy(ctx->buf, buf, buf_len);
ctx->query = query;
return ctx;
}
void close_and_free_query(EV_P_ struct query_ctx *ctx)
{
if (ctx != NULL)
{
if (ctx->buf != NULL)
{
free(ctx->buf);
}
free(ctx);
}
}
#endif
void close_and_free_remote(EV_P_ struct remote_ctx *ctx)
{
if (ctx != NULL)
{
ev_timer_stop(EV_A_ &ctx->watcher);
ev_io_stop(EV_A_ &ctx->io);
close(ctx->fd);
free(ctx);
}
}
static void remote_timeout_cb(EV_P_ ev_timer *watcher, int revents)
{
struct remote_ctx *remote_ctx = (struct remote_ctx *) (((void*)watcher)
- sizeof(ev_io));
if (verbose)
{
LOGD("UDP connection timeout");
}
char *key = hash_key(remote_ctx->addr_header,
remote_ctx->addr_header_len, &remote_ctx->src_addr);
cache_remove(remote_ctx->server_ctx->conn_cache, key);
}
#ifdef UDPRELAY_REMOTE
static void query_resolve_cb(EV_P_ ev_io *w, int revents)
{
int err;
struct addrinfo *result, *rp;
struct resolve_ctx *resolve_ctx = (struct resolve_ctx*)w;
asyncns_t *asyncns = resolve_ctx->asyncns;
err = asyncns_handle(asyncns);
if (err == ASYNCNS_HANDLE_AGAIN)
{
// try again
return;
}
else if (err == ASYNCNS_HANDLE_ERROR)
{
// asyncns error
FATAL("asyncns exit unexpectedly.");
}
asyncns_query_t *query = asyncns_getnext(asyncns);
struct query_ctx *query_ctx= (struct query_ctx*) asyncns_getuserdata(asyncns, query);
if (!asyncns_isdone(asyncns, query))
{
// wait reolver
return;
}
if (verbose)
{
LOGD("[udp] asyncns resolved.");
}
query_ctx->query = NULL;
err = asyncns_getaddrinfo_done(asyncns, query, &result);
if (err)
{
ERROR("getaddrinfo");
}
else
{
// Use IPV4 address if possible
for (rp = result; rp != NULL; rp = rp->ai_next)
{
if (rp->ai_family == AF_INET) break;
}
if (rp == NULL)
{
rp = result;
}
int remotefd = create_remote_socket(rp->ai_family == AF_INET6);
if (remotefd != -1)
{
setnonblocking(remotefd);
#ifdef SO_NOSIGPIPE
int opt = 1;
setsockopt(remotefd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt));
#endif
#ifdef SET_INTERFACE
if (query_ctx->server_ctx->iface)
setinterface(remotefd, query_ctx->server_ctx->iface);
#endif
struct remote_ctx *remote_ctx = new_remote(remotefd, query_ctx->server_ctx);
remote_ctx->src_addr = query_ctx->src_addr;
remote_ctx->dst_addr = *rp->ai_addr;
remote_ctx->server_ctx = query_ctx->server_ctx;
remote_ctx->addr_header_len = query_ctx->addr_header_len;
memcpy(remote_ctx->addr_header, query_ctx->addr_header, query_ctx->addr_header_len);
// Add to conn cache
char *key = hash_key(remote_ctx->addr_header,
remote_ctx->addr_header_len, &remote_ctx->src_addr);
cache_insert(query_ctx->server_ctx->conn_cache, key, (void *)remote_ctx);
ev_io_start(EV_A_ &remote_ctx->io);
int s = sendto(remote_ctx->fd, query_ctx->buf, query_ctx->buf_len, 0, &remote_ctx->dst_addr, sizeof(remote_ctx->dst_addr));
if (s == -1)
{
ERROR("udprelay_sendto_remote");
close_and_free_remote(EV_A_ remote_ctx);
}
}
else
{
ERROR("udprelay bind() error..");
}
}
// clean up
asyncns_freeaddrinfo(result);
close_and_free_query(EV_A_ query_ctx);
}
#endif
static void remote_recv_cb (EV_P_ ev_io *w, int revents)
{
struct remote_ctx *remote_ctx = (struct remote_ctx *)w;
struct server_ctx *server_ctx = remote_ctx->server_ctx;
// server has been closed
if (server_ctx == NULL)
{
LOGE("invalid server.");
close_and_free_remote(EV_A_ remote_ctx);
return;
}
if (verbose)
{
LOGD("[udp] remote receive a packet");
}
// triger the timer
ev_timer_again(EV_A_ &remote_ctx->watcher);
struct sockaddr src_addr;
socklen_t src_addr_len = sizeof(src_addr);
char *buf = malloc(BUF_SIZE);
// recv
ssize_t buf_len = recvfrom(remote_ctx->fd, buf, BUF_SIZE, 0, &src_addr, &src_addr_len);
if (buf_len == -1)
{
// error on recv
// simply drop that packet
if (verbose)
{
ERROR("udprelay_server_recvfrom");
}
goto CLEAN_UP;
}
#ifdef UDPRELAY_LOCAL
buf = ss_decrypt_all(BUF_SIZE, buf, &buf_len, server_ctx->method);
if (buf == NULL)
{
if (verbose)
{
ERROR("udprelay_server_ss_decrypt_all");
}
goto CLEAN_UP;
}
int len = parse_udprealy_header(buf, buf_len, NULL, NULL);
if (len == 0)
{
LOGD("[udp] Error in parse header");
// error in parse header
goto CLEAN_UP;
}
// server may return using a different address type other than the type we
// have used during sending
#ifdef UDPRELAY_TUNNEL
// Construct packet
buf_len -= len;
memmove(buf, buf + len, buf_len);
#else
// Construct packet
char *tmpbuf = malloc(buf_len + 3);
memset(tmpbuf, 0, 3);
memcpy(tmpbuf + 3, buf, buf_len);
free(buf);
buf = tmpbuf;
buf_len += 3;
#endif
#endif
#ifdef UDPRELAY_REMOTE
unsigned int addr_header_len = remote_ctx->addr_header_len;
// Construct packet
char *tmpbuf = malloc(buf_len + addr_header_len);
memcpy(tmpbuf, remote_ctx->addr_header, addr_header_len);
memcpy(tmpbuf + addr_header_len, buf, buf_len);
free(buf);
buf = tmpbuf;
buf_len += addr_header_len;
buf = ss_encrypt_all(BUF_SIZE, buf, &buf_len, server_ctx->method);
#endif
int s = sendto(server_ctx->fd, buf, buf_len, 0, &remote_ctx->src_addr, sizeof(remote_ctx->src_addr));
if (s == -1)
{
ERROR("udprelay_sendto_local");
}
CLEAN_UP:
free(buf);
}
static void server_recv_cb (EV_P_ ev_io *w, int revents)
{
struct server_ctx *server_ctx = (struct server_ctx *)w;
struct sockaddr src_addr;
char *buf = malloc(BUF_SIZE);
socklen_t src_addr_len = sizeof(src_addr);
unsigned int offset = 0;
ssize_t buf_len = recvfrom(server_ctx->fd, buf, BUF_SIZE, 0, &src_addr, &src_addr_len);
if (buf_len == -1)
{
// error on recv
// simply drop that packet
if (verbose)
{
ERROR("udprelay_server_recvfrom");
}
goto CLEAN_UP;
}
if (verbose)
{
LOGD("[udp] server receive a packet.");
}
#ifdef UDPRELAY_REMOTE
buf = ss_decrypt_all(BUF_SIZE, buf, &buf_len, server_ctx->method);
if (buf == NULL)
{
if (verbose)
{
ERROR("udprelay_server_ss_decrypt_all");
}
goto CLEAN_UP;
}
#endif
#ifdef UDPRELAY_LOCAL
#ifndef UDPRELAY_TUNNEL
uint8_t frag = *(uint8_t*)(buf + 2);
offset += 3;
#endif
#endif
/*
*
* SOCKS5 UDP Request
* +----+------+------+----------+----------+----------+
* |RSV | FRAG | ATYP | DST.ADDR | DST.PORT | DATA |
* +----+------+------+----------+----------+----------+
* | 2 | 1 | 1 | Variable | 2 | Variable |
* +----+------+------+----------+----------+----------+
*
* SOCKS5 UDP Response
* +----+------+------+----------+----------+----------+
* |RSV | FRAG | ATYP | DST.ADDR | DST.PORT | DATA |
* +----+------+------+----------+----------+----------+
* | 2 | 1 | 1 | Variable | 2 | Variable |
* +----+------+------+----------+----------+----------+
*
* shadowsocks UDP Request (before encrypted)
* +------+----------+----------+----------+
* | ATYP | DST.ADDR | DST.PORT | DATA |
* +------+----------+----------+----------+
* | 1 | Variable | 2 | Variable |
* +------+----------+----------+----------+
*
* shadowsocks UDP Response (before encrypted)
* +------+----------+----------+----------+
* | ATYP | DST.ADDR | DST.PORT | DATA |
* +------+----------+----------+----------+
* | 1 | Variable | 2 | Variable |
* +------+----------+----------+----------+
*
* shadowsocks UDP Request and Response (after encrypted)
* +-------+--------------+
* | IV | PAYLOAD |
* +-------+--------------+
* | Fixed | Variable |
* +-------+--------------+
*
*/
#ifdef UDPRELAY_TUNNEL
char addr_header[256] = {0};
char* host = server_ctx->tunnel_addr.host;
char* port = server_ctx->tunnel_addr.port;
int host_len = strlen(host);
uint16_t port_num = (uint16_t)atoi(port);
uint16_t port_net_num = htons(port_num);
int addr_header_len = 2 + host_len + 2;
// initialize the addr header
addr_header[0] = 3;
addr_header[1] = host_len;
memcpy(addr_header + 2, host, host_len);
memcpy(addr_header + 2 + host_len, &port_net_num, 2);
// reconstruct the buffer
char *tmp = malloc(buf_len + addr_header_len);
memcpy(tmp, addr_header, addr_header_len);
memcpy(tmp + addr_header_len, buf, buf_len);
free(buf);
buf = tmp;
buf_len += addr_header_len;
#else
char host[256] = {0};
char port[64] = {0};
int addr_header_len = parse_udprealy_header(buf + offset,
buf_len - offset, host, port);
if (addr_header_len == 0)
{
// error in parse header
goto CLEAN_UP;
}
char *addr_header = buf + offset;
#endif
char *key = hash_key(addr_header, addr_header_len, &src_addr);
struct cache *conn_cache = server_ctx->conn_cache;
struct remote_ctx *remote_ctx = NULL;
cache_lookup(conn_cache, key, (void*)&remote_ctx);
if (remote_ctx != NULL)
{
if (memcmp(&src_addr, &remote_ctx->src_addr, sizeof(src_addr))
|| strcmp(addr_header, remote_ctx->addr_header) != 0)
{
remote_ctx = NULL;
}
}
if (remote_ctx == NULL)
{
if (verbose)
{
LOGD("[udp] cache missed: %s:%s <-> %s", host, port, get_addr_str(&src_addr));
}
}
else
{
if (verbose)
{
LOGD("[udp] cache hit: %s:%s <-> %s", host, port, get_addr_str(&src_addr));
}
}
#ifdef UDPRELAY_LOCAL
#ifndef UDPRELAY_TUNNEL
if (frag)
{
LOGE("drop a message since frag is not 0, but %d", frag);
goto CLEAN_UP;
}
#endif
if (remote_ctx == NULL)
{
struct addrinfo hints;
struct addrinfo *result;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC; /* Return IPv4 and IPv6 choices */
hints.ai_socktype = SOCK_DGRAM; /* We want a UDP socket */
int s = getaddrinfo(server_ctx->remote_host, server_ctx->remote_port,
&hints, &result);
if (s != 0 || result == NULL)
{
LOGE("getaddrinfo: %s", gai_strerror(s));
goto CLEAN_UP;
}
// Bind to any port
int remotefd = create_remote_socket(result->ai_family == AF_INET6);
if (remotefd < 0)
{
ERROR("udprelay bind() error..");
// remember to free addrinfo
freeaddrinfo(result);
goto CLEAN_UP;
}
setnonblocking(remotefd);
#ifdef SO_NOSIGPIPE
int opt = 1;
setsockopt(remotefd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt));
#endif
#ifdef SET_INTERFACE
if (server_ctx->iface)
setinterface(remotefd, server_ctx->iface);
#endif
// Init remote_ctx
remote_ctx = new_remote(remotefd, server_ctx);
remote_ctx->src_addr = src_addr;
remote_ctx->dst_addr = *result->ai_addr;
remote_ctx->addr_header_len = addr_header_len;
memcpy(remote_ctx->addr_header, addr_header, addr_header_len);
// Add to conn cache
cache_insert(conn_cache, key, (void *)remote_ctx);
// Start remote io
ev_io_start(EV_A_ &remote_ctx->io);
// clean up
freeaddrinfo(result);
}
if (offset > 0)
{
buf_len -= offset;
memmove(buf, buf + offset, buf_len);
}
buf = ss_encrypt_all(BUF_SIZE, buf, &buf_len, server_ctx->method);
int s = sendto(remote_ctx->fd, buf, buf_len, 0, &remote_ctx->dst_addr, sizeof(remote_ctx->dst_addr));
if (s == -1)
{
ERROR("udprelay_sendto_remote");
}
#else
if (remote_ctx == NULL)
{
struct addrinfo hints;
asyncns_query_t *query;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
query = asyncns_getaddrinfo(server_ctx->asyncns,
host, port, &hints);
if (query == NULL)
{
ERROR("udp_asyncns_getaddrinfo");
goto CLEAN_UP;
}
struct query_ctx *query_ctx = new_query_ctx(query, buf + addr_header_len,
buf_len - addr_header_len);
query_ctx->server_ctx = server_ctx;
query_ctx->addr_header_len = addr_header_len;
query_ctx->src_addr = src_addr;
memcpy(query_ctx->addr_header, addr_header, addr_header_len);
asyncns_setuserdata(server_ctx->asyncns, query, query_ctx);
}
else
{
int s = sendto(remote_ctx->fd, buf + addr_header_len,
buf_len - addr_header_len, 0, &remote_ctx->dst_addr, sizeof(remote_ctx->dst_addr));
if (s == -1)
{
ERROR("udprelay_sendto_remote");
}
}
#endif
CLEAN_UP:
free(buf);
}
void free_cb(void *element)
{
struct remote_ctx *remote_ctx = (struct remote_ctx *)element;
if (verbose)
{
LOGD("free a remote ctx");
}
close_and_free_remote(EV_DEFAULT, remote_ctx);
}
int udprelay_init(const char *server_host, const char *server_port,
#ifdef UDPRELAY_LOCAL
const char *remote_host, const char *remote_port,
#ifdef UDPRELAY_TUNNEL
const ss_addr_t tunnel_addr,
#endif
#endif
#ifdef UDPRELAY_REMOTE
int dns_thread_num,
#endif
int method, int timeout, const char *iface)
{
// Inilitialize ev loop
struct ev_loop *loop = EV_DEFAULT;
// Inilitialize cache
struct cache *conn_cache;
cache_create(&conn_cache, MAX_UDP_CONN_NUM, free_cb);
//////////////////////////////////////////////////
// Setup server context
#ifdef UDPRELAY_REMOTE
// setup asyncns
asyncns_t *asyncns;
if (!(asyncns = asyncns_new(dns_thread_num)))
{
FATAL("asyncns failed");
}
struct resolve_ctx *resolve_ctx = malloc(sizeof(struct resolve_ctx));
resolve_ctx->asyncns = asyncns;
int asyncnsfd = asyncns_fd(asyncns);
ev_io_init (&resolve_ctx->io, query_resolve_cb, asyncnsfd, EV_READ);
ev_io_start (loop, &resolve_ctx->io);
#endif
// Bind to port
int serverfd = create_server_socket(server_host, server_port);
if (serverfd < 0)
{
FATAL("udprelay bind() error..");
}
setnonblocking(serverfd);
struct server_ctx *server_ctx = new_server_ctx(serverfd);
server_ctx->timeout = timeout;
server_ctx->method = method;
server_ctx->iface = iface;
server_ctx->conn_cache = conn_cache;
#ifdef UDPRELAY_LOCAL
server_ctx->remote_host = remote_host;
server_ctx->remote_port = remote_port;
#ifdef UDPRELAY_TUNNEL
server_ctx->tunnel_addr = tunnel_addr;
#endif
#endif
#ifdef UDPRELAY_REMOTE
server_ctx->asyncns = asyncns;
#endif
ev_io_start(loop, &server_ctx->io);
return 0;
}