You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1157 lines
32 KiB

/*
* local.c - Setup a socks5 proxy through remote shadowsocks server
*
* Copyright (C) 2013 - 2014, Max Lv <max.c.lv@gmail.com>
*
* This file is part of the shadowsocks-libev.
*
* shadowsocks-libev is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* shadowsocks-libev is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with pdnsd; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <locale.h>
#include <signal.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include <getopt.h>
#ifndef __MINGW32__
#include <errno.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <pthread.h>
#endif
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#if defined(HAVE_SYS_IOCTL_H) && defined(HAVE_NET_IF_H) && defined(__linux__)
#include <net/if.h>
#include <sys/ioctl.h>
#define SET_INTERFACE
#endif
#ifdef __MINGW32__
#include "win32.h"
#endif
#include "utils.h"
#include "local.h"
#include "socks5.h"
#include "acl.h"
#ifndef EAGAIN
#define EAGAIN EWOULDBLOCK
#endif
#ifndef EWOULDBLOCK
#define EWOULDBLOCK EAGAIN
#endif
#ifndef BUF_SIZE
#define BUF_SIZE 2048
#endif
int acl = 0;
int verbose = 0;
int udprelay = 0;
static int fast_open = 0;
#ifdef HAVE_SETRLIMIT
static int nofile = 0;
#endif
#ifndef __MINGW32__
static int setnonblocking(int fd)
{
int flags;
if (-1 ==(flags = fcntl(fd, F_GETFL, 0)))
flags = 0;
return fcntl(fd, F_SETFL, flags | O_NONBLOCK);
}
#endif
#ifdef SET_INTERFACE
int setinterface(int socket_fd, const char* interface_name)
{
struct ifreq interface;
memset(&interface, 0, sizeof(interface));
strncpy(interface.ifr_name, interface_name, IFNAMSIZ);
int res = setsockopt(socket_fd, SOL_SOCKET, SO_BINDTODEVICE, &interface, sizeof(struct ifreq));
return res;
}
#endif
int create_and_bind(const char *addr, const char *port)
{
struct addrinfo hints;
struct addrinfo *result, *rp;
int s, listen_sock;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC; /* Return IPv4 and IPv6 choices */
hints.ai_socktype = SOCK_STREAM; /* We want a TCP socket */
s = getaddrinfo(addr, port, &hints, &result);
if (s != 0)
{
LOGD("getaddrinfo: %s", gai_strerror(s));
return -1;
}
for (rp = result; rp != NULL; rp = rp->ai_next)
{
listen_sock = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
if (listen_sock == -1)
continue;
int opt = 1;
setsockopt(listen_sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
setsockopt(listen_sock, IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt));
#ifdef SO_NOSIGPIPE
setsockopt(listen_sock, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt));
#endif
s = bind(listen_sock, rp->ai_addr, rp->ai_addrlen);
if (s == 0)
{
/* We managed to bind successfully! */
break;
}
else
{
ERROR("bind");
}
close(listen_sock);
}
if (rp == NULL)
{
LOGE("Could not bind");
return -1;
}
freeaddrinfo(result);
return listen_sock;
}
static void server_recv_cb (EV_P_ ev_io *w, int revents)
{
struct server_ctx *server_recv_ctx = (struct server_ctx *)w;
struct server *server = server_recv_ctx->server;
struct remote *remote = server->remote;
char *buf;
if (remote == NULL)
{
buf = server->buf;
}
else
{
buf = remote->buf;
}
ssize_t r = recv(server->fd, buf, BUF_SIZE, 0);
if (r == 0)
{
// connection closed
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
else if (r < 0)
{
if (errno == EAGAIN || errno == EWOULDBLOCK)
{
// no data
// continue to wait for recv
return;
}
else
{
ERROR("server_recv_cb_recv");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
while (r > 0)
{
// local socks5 server
if (server->stage == 5)
{
if (remote == NULL)
{
LOGE("invalid remote.");
close_and_free_server(EV_A_ server);
return;
}
// Copy to remote->buf
if (buf != remote->buf) {
memcpy(remote->buf, buf, r);
}
// insert shadowsocks header
if (!remote->direct)
{
if (!remote->send_ctx->connected)
{
char *tmp = malloc(max(BUF_SIZE, r + server->addr_len));
memcpy(tmp, server->addr_to_send, server->addr_len);
memcpy(tmp + server->addr_len, remote->buf, r);
r += server->addr_len;
// deallocate
free(remote->buf);
remote->buf = tmp;
}
remote->buf = ss_encrypt(BUF_SIZE, remote->buf, &r, server->e_ctx);
if (remote->buf == NULL)
{
LOGE("invalid password or cipher");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
if (!remote->send_ctx->connected)
{
remote->buf_idx = 0;
remote->buf_len = r;
if (!fast_open || remote->direct)
{
// connecting, wait until connected
connect(remote->fd, remote->addr_info->ai_addr, remote->addr_info->ai_addrlen);
// wait on remote connected event
ev_io_stop(EV_A_ &server_recv_ctx->io);
ev_io_start(EV_A_ &remote->send_ctx->io);
ev_timer_start(EV_A_ &remote->send_ctx->watcher);
}
else
{
#ifdef TCP_FASTOPEN
int s = sendto(remote->fd, remote->buf, r, MSG_FASTOPEN,
remote->addr_info->ai_addr, remote->addr_info->ai_addrlen);
if (s == -1)
{
if (errno == EINPROGRESS)
{
// in progress, wait until connected
remote->buf_idx = 0;
remote->buf_len = r;
ev_io_stop(EV_A_ &server_recv_ctx->io);
ev_io_start(EV_A_ &remote->send_ctx->io);
return;
}
else
{
ERROR("sendto");
if (errno == ENOTCONN)
{
LOGE("fast open is not supported on this platform");
// just turn it off
fast_open = 0;
}
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
else if (s < r)
{
remote->buf_len = r - s;
remote->buf_idx = s;
}
// Just connected
remote->send_ctx->connected = 1;
ev_timer_stop(EV_A_ &remote->send_ctx->watcher);
ev_io_start(EV_A_ &remote->recv_ctx->io);
#else
// if TCP_FASTOPEN is not defined, fast_open will always be 0
LOGE("can't come here");
exit(1);
#endif
}
}
else
{
int s = send(remote->fd, remote->buf, r, 0);
if (s == -1)
{
if (errno == EAGAIN || errno == EWOULDBLOCK)
{
// no data, wait for send
remote->buf_idx = 0;
remote->buf_len = r;
ev_io_stop(EV_A_ &server_recv_ctx->io);
ev_io_start(EV_A_ &remote->send_ctx->io);
return;
}
else
{
ERROR("server_recv_cb_send");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
else if (s < r)
{
remote->buf_len = r - s;
remote->buf_idx = s;
ev_io_stop(EV_A_ &server_recv_ctx->io);
ev_io_start(EV_A_ &remote->send_ctx->io);
return;
}
}
// all processed
r = 0;
}
else if (server->stage == 0)
{
struct method_select_response response;
response.ver = SVERSION;
response.method = 0;
char *send_buf = (char *)&response;
send(server->fd, send_buf, sizeof(response), 0);
server->stage = 1;
r -= 3;
buf += 3;
return;
}
else if (server->stage == 1)
{
struct socks5_request *request = (struct socks5_request *)buf;
struct sockaddr_in sock_addr;
memset(&sock_addr, 0, sizeof(sock_addr));
if (udprelay && request->cmd == 3)
{
socklen_t addr_len = sizeof(sock_addr);
getsockname(server->fd, (struct sockaddr *)&sock_addr,
&addr_len);
if (verbose)
{
LOGD("udp assc request accepted.");
}
}
else if (request->cmd != 1)
{
LOGE("unsupported cmd: %d", request->cmd);
struct socks5_response response;
response.ver = SVERSION;
response.rep = CMD_NOT_SUPPORTED;
response.rsv = 0;
response.atyp = 1;
char *send_buf = (char *)&response;
send(server->fd, send_buf, 4, 0);
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
else
{
char *ss_addr_to_send = malloc(BUF_SIZE);
ssize_t addr_len = 0;
ss_addr_to_send[addr_len++] = request->atyp;
char host[256], port[16];
// get remote addr and port
if (request->atyp == 1)
{
// IP V4
size_t in_addr_len = sizeof(struct in_addr);
memcpy(ss_addr_to_send + addr_len, buf + 4, in_addr_len + 2);
addr_len += in_addr_len + 2;
if (acl || verbose)
{
uint16_t p = ntohs(*(uint16_t *)(buf + 4 + in_addr_len));
inet_ntop(AF_INET, (const void *)(buf + 4),
host, INET_ADDRSTRLEN);
sprintf(port, "%d", p);
}
}
else if (request->atyp == 3)
{
// Domain name
uint8_t name_len = *(uint8_t *)(buf + 4);
ss_addr_to_send[addr_len++] = name_len;
memcpy(ss_addr_to_send + addr_len, buf + 4 + 1, name_len + 2);
addr_len += name_len + 2;
if (acl || verbose)
{
uint16_t p = ntohs(*(uint16_t *)(buf + 4 + 1 + name_len));
memcpy(host, buf + 4 + 1, name_len);
host[name_len] = '\0';
sprintf(port, "%d", p);
}
}
else if (request->atyp == 4)
{
// IP V6
size_t in6_addr_len = sizeof(struct in6_addr);
memcpy(ss_addr_to_send + addr_len, buf + 4, in6_addr_len + 2);
addr_len += in6_addr_len + 2;
if (acl || verbose)
{
uint16_t p = ntohs(*(uint16_t *)(buf + 4 + in6_addr_len));
inet_ntop(AF_INET6, (const void *)(buf + 4),
host, INET6_ADDRSTRLEN);
sprintf(port, "%d", p);
}
}
else
{
LOGE("unsupported addrtype: %d", request->atyp);
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
server->addr_to_send = ss_addr_to_send;
server->addr_len = addr_len;
server->stage = 5;
r -= (4 + addr_len);
buf += (4 + addr_len);
if (verbose)
{
LOGD("connect to %s:%s", host, port);
}
if ((acl && request->atyp == 1 && acl_contains_ip(host))
|| (acl && request->atyp == 3 && acl_contains_domain(host)))
{
remote = connect_to_remote(server->listener, host, port);
remote->direct = 1;
if (verbose)
{
LOGD("bypass %s:%s", host, port);
}
}
else
{
remote = connect_to_remote(server->listener, NULL, NULL);
}
if (remote == NULL)
{
LOGE("invalid remote addr.");
close_and_free_server(EV_A_ server);
return;
}
server->remote = remote;
remote->server = server;
}
// Fake reply
struct socks5_response response;
response.ver = SVERSION;
response.rep = 0;
response.rsv = 0;
response.atyp = 1;
memcpy(server->buf, &response, sizeof(struct socks5_response));
memcpy(server->buf + sizeof(struct socks5_response), &sock_addr.sin_addr, sizeof(sock_addr.sin_addr));
memcpy(server->buf + sizeof(struct socks5_response) + sizeof(sock_addr.sin_addr),
&sock_addr.sin_port, sizeof(sock_addr.sin_port));
int reply_size = sizeof(struct socks5_response) + sizeof(sock_addr.sin_addr) + sizeof(sock_addr.sin_port);
int s = send(server->fd, server->buf, reply_size, 0);
if (s < reply_size)
{
LOGE("failed to send fake reply.");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
if (request->cmd == 3)
{
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
}
}
static void server_send_cb (EV_P_ ev_io *w, int revents)
{
struct server_ctx *server_send_ctx = (struct server_ctx *)w;
struct server *server = server_send_ctx->server;
struct remote *remote = server->remote;
if (server->buf_len == 0)
{
// close and free
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
else
{
// has data to send
ssize_t s = send(server->fd, server->buf + server->buf_idx,
server->buf_len, 0);
if (s < 0)
{
if (errno != EAGAIN && errno != EWOULDBLOCK)
{
ERROR("server_send_cb_send");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
return;
}
else if (s < server->buf_len)
{
// partly sent, move memory, wait for the next time to send
server->buf_len -= s;
server->buf_idx += s;
return;
}
else
{
// all sent out, wait for reading
server->buf_len = 0;
server->buf_idx = 0;
ev_io_stop(EV_A_ &server_send_ctx->io);
ev_io_start(EV_A_ &remote->recv_ctx->io);
}
}
}
static void remote_timeout_cb(EV_P_ ev_timer *watcher, int revents)
{
struct remote_ctx *remote_ctx = (struct remote_ctx *) (((void*)watcher)
- sizeof(ev_io));
struct remote *remote = remote_ctx->remote;
struct server *server = remote->server;
LOGD("remote timeout");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
static void remote_recv_cb (EV_P_ ev_io *w, int revents)
{
struct remote_ctx *remote_recv_ctx = (struct remote_ctx *)w;
struct remote *remote = remote_recv_ctx->remote;
struct server *server = remote->server;
ev_timer_again(EV_A_ &remote->recv_ctx->watcher);
ssize_t r = recv(remote->fd, server->buf, BUF_SIZE, 0);
if (r == 0)
{
// connection closed
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
else if (r < 0)
{
if (errno == EAGAIN || errno == EWOULDBLOCK)
{
// no data
// continue to wait for recv
return;
}
else
{
ERROR("remote_recv_cb_recv");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
if (!remote->direct)
{
server->buf = ss_decrypt(BUF_SIZE, server->buf, &r, server->d_ctx);
if (server->buf == NULL)
{
LOGE("invalid password or cipher");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
int s = send(server->fd, server->buf, r, 0);
if (s == -1)
{
if (errno == EAGAIN || errno == EWOULDBLOCK)
{
// no data, wait for send
server->buf_len = r;
server->buf_idx = 0;
ev_io_stop(EV_A_ &remote_recv_ctx->io);
ev_io_start(EV_A_ &server->send_ctx->io);
return;
}
else
{
ERROR("remote_recv_cb_send");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
else if (s < r)
{
server->buf_len = r - s;
server->buf_idx = s;
ev_io_stop(EV_A_ &remote_recv_ctx->io);
ev_io_start(EV_A_ &server->send_ctx->io);
return;
}
}
static void remote_send_cb (EV_P_ ev_io *w, int revents)
{
struct remote_ctx *remote_send_ctx = (struct remote_ctx *)w;
struct remote *remote = remote_send_ctx->remote;
struct server *server = remote->server;
if (!remote_send_ctx->connected)
{
struct sockaddr_storage addr;
socklen_t len = sizeof addr;
int r = getpeername(remote->fd, (struct sockaddr*)&addr, &len);
if (r == 0)
{
remote_send_ctx->connected = 1;
ev_timer_stop(EV_A_ &remote_send_ctx->watcher);
ev_timer_start(EV_A_ &remote->recv_ctx->watcher);
ev_io_start(EV_A_ &remote->recv_ctx->io);
}
else
{
// not connected
ERROR("getpeername");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
if (remote->buf_len == 0)
{
// close and free
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
else
{
// has data to send
ssize_t s = send(remote->fd, remote->buf + remote->buf_idx,
remote->buf_len, 0);
if (s < 0)
{
if (errno != EAGAIN && errno != EWOULDBLOCK)
{
ERROR("remote_send_cb_send");
// close and free
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
return;
}
else if (s < remote->buf_len)
{
// partly sent, move memory, wait for the next time to send
remote->buf_len -= s;
remote->buf_idx += s;
return;
}
else
{
// all sent out, wait for reading
remote->buf_len = 0;
remote->buf_idx = 0;
ev_io_stop(EV_A_ &remote_send_ctx->io);
ev_io_start(EV_A_ &server->recv_ctx->io);
}
}
}
struct remote* new_remote(int fd, int timeout)
{
struct remote *remote;
remote = malloc(sizeof(struct remote));
memset(remote, 0, sizeof(struct remote));
remote->buf = malloc(BUF_SIZE);
remote->recv_ctx = malloc(sizeof(struct remote_ctx));
remote->send_ctx = malloc(sizeof(struct remote_ctx));
remote->recv_ctx->connected = 0;
remote->send_ctx->connected = 0;
remote->fd = fd;
ev_io_init(&remote->recv_ctx->io, remote_recv_cb, fd, EV_READ);
ev_io_init(&remote->send_ctx->io, remote_send_cb, fd, EV_WRITE);
ev_timer_init(&remote->send_ctx->watcher, remote_timeout_cb, timeout, 0);
ev_timer_init(&remote->recv_ctx->watcher, remote_timeout_cb, timeout, timeout * 60);
remote->recv_ctx->remote = remote;
remote->send_ctx->remote = remote;
return remote;
}
static void free_remote(struct remote *remote)
{
if (remote != NULL)
{
if (remote->server != NULL)
{
remote->server->remote = NULL;
}
if (remote->buf != NULL)
{
free(remote->buf);
}
if (remote->addr_info != NULL)
{
freeaddrinfo(remote->addr_info);
}
free(remote->recv_ctx);
free(remote->send_ctx);
free(remote);
}
}
static void close_and_free_remote(EV_P_ struct remote *remote)
{
if (remote != NULL)
{
ev_timer_stop(EV_A_ &remote->send_ctx->watcher);
ev_timer_stop(EV_A_ &remote->recv_ctx->watcher);
ev_io_stop(EV_A_ &remote->send_ctx->io);
ev_io_stop(EV_A_ &remote->recv_ctx->io);
close(remote->fd);
free_remote(remote);
}
}
struct server* new_server(int fd, int method)
{
struct server *server;
server = malloc(sizeof(struct server));
memset(server, 0, sizeof(struct server));
server->buf = malloc(BUF_SIZE);
server->recv_ctx = malloc(sizeof(struct server_ctx));
server->send_ctx = malloc(sizeof(struct server_ctx));
server->recv_ctx->connected = 0;
server->send_ctx->connected = 0;
server->fd = fd;
ev_io_init(&server->recv_ctx->io, server_recv_cb, fd, EV_READ);
ev_io_init(&server->send_ctx->io, server_send_cb, fd, EV_WRITE);
server->recv_ctx->server = server;
server->send_ctx->server = server;
if (method)
{
server->e_ctx = malloc(sizeof(struct enc_ctx));
server->d_ctx = malloc(sizeof(struct enc_ctx));
enc_ctx_init(method, server->e_ctx, 1);
enc_ctx_init(method, server->d_ctx, 0);
}
else
{
server->e_ctx = NULL;
server->d_ctx = NULL;
}
return server;
}
static void free_server(struct server *server)
{
if (server != NULL)
{
if (server->remote != NULL)
{
server->remote->server = NULL;
}
if (server->e_ctx != NULL)
{
cipher_context_release(&server->e_ctx->evp);
free(server->e_ctx);
}
if (server->d_ctx != NULL)
{
cipher_context_release(&server->d_ctx->evp);
free(server->d_ctx);
}
if (server->buf != NULL)
{
free(server->buf);
}
if (server->addr_to_send != NULL)
{
free(server->addr_to_send);
}
free(server->recv_ctx);
free(server->send_ctx);
free(server);
}
}
static void close_and_free_server(EV_P_ struct server *server)
{
if (server != NULL)
{
ev_io_stop(EV_A_ &server->send_ctx->io);
ev_io_stop(EV_A_ &server->recv_ctx->io);
close(server->fd);
free_server(server);
}
}
static struct remote* connect_to_remote(struct listen_ctx *listener,
const char *host, const char *port)
{
int opt = 1;
int sockfd;
struct addrinfo *remote_res;
struct addrinfo hints;
memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
int index = rand() % listener->remote_num;
int err;
if (host == NULL || port == NULL)
{
if (verbose)
{
LOGD("connect to server: %s:%s", listener->remote_addr[index].host,
listener->remote_addr[index].port);
}
err = getaddrinfo(listener->remote_addr[index].host,
listener->remote_addr[index].port, &hints, &remote_res);
}
else
err = getaddrinfo(host, port, &hints, &remote_res);
if (err)
{
ERROR("getaddrinfo");
return NULL;
}
sockfd = socket(remote_res->ai_family, remote_res->ai_socktype,
remote_res->ai_protocol);
if (sockfd < 0)
{
ERROR("socket");
freeaddrinfo(remote_res);
return NULL;
}
setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt));
#ifdef SO_NOSIGPIPE
setsockopt(sockfd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt));
#endif
// Setup
setnonblocking(sockfd);
#ifdef SET_INTERFACE
if (listener->iface) setinterface(sockfd, listener->iface);
#endif
struct remote *remote = new_remote(sockfd, listener->timeout);
remote->addr_info = remote_res;
return remote;
}
static void accept_cb (EV_P_ ev_io *w, int revents)
{
struct listen_ctx *listener = (struct listen_ctx *)w;
int serverfd = accept(listener->fd, NULL, NULL);
if (serverfd == -1)
{
ERROR("accept");
return;
}
setnonblocking(serverfd);
int opt = 1;
setsockopt(serverfd, IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt));
#ifdef SO_NOSIGPIPE
setsockopt(serverfd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt));
#endif
struct server *server = new_server(serverfd, listener->method);
server->listener = listener;
ev_io_start(EV_A_ &server->recv_ctx->io);
}
int main (int argc, char **argv)
{
int i, c;
int pid_flags = 0;
char *user = NULL;
char *local_port = NULL;
char *local_addr = NULL;
char *password = NULL;
char *timeout = NULL;
char *method = NULL;
char *pid_path = NULL;
char *conf_path = NULL;
char *iface = NULL;
srand(time(NULL));
int remote_num = 0;
ss_addr_t remote_addr[MAX_REMOTE_NUM];
char *remote_port = NULL;
int option_index = 0;
static struct option long_options[] =
{
{"fast-open", no_argument, 0, 0 },
{"acl", required_argument, 0, 0 },
{0, 0, 0, 0 }
};
opterr = 0;
while ((c = getopt_long(argc, argv, "f:s:p:l:k:t:m:i:c:b:a:uv",
long_options, &option_index)) != -1)
{
switch (c)
{
case 0:
if (option_index == 0)
{
#ifdef TCP_FASTOPEN
fast_open = 1;
LOGD("using tcp fast open");
#else
LOGE("tcp fast open is not supported by this environment");
#endif
}
else if (option_index == 1)
{
LOGD("initialize acl...");
acl = 1;
init_acl(optarg);
}
break;
case 's':
remote_addr[remote_num].host = optarg;
remote_addr[remote_num++].port = NULL;
break;
case 'p':
remote_port = optarg;
break;
case 'l':
local_port = optarg;
break;
case 'k':
password = optarg;
break;
case 'f':
pid_flags = 1;
pid_path = optarg;
break;
case 't':
timeout = optarg;
break;
case 'm':
method = optarg;
break;
case 'c':
conf_path = optarg;
break;
case 'i':
iface = optarg;
break;
case 'b':
local_addr = optarg;
break;
case 'a':
user = optarg;
break;
case 'u':
udprelay = 1;
break;
case 'v':
verbose = 1;
break;
}
}
if (opterr)
{
usage();
exit(EXIT_FAILURE);
}
if (conf_path != NULL)
{
jconf_t *conf = read_jconf(conf_path);
if (remote_num == 0)
{
remote_num = conf->remote_num;
for (i = 0; i < remote_num; i++)
{
remote_addr[i] = conf->remote_addr[i];
}
}
if (remote_port == NULL) remote_port = conf->remote_port;
if (local_addr == NULL) local_addr = conf->local_addr;
if (local_port == NULL) local_port = conf->local_port;
if (password == NULL) password = conf->password;
if (method == NULL) method = conf->method;
if (timeout == NULL) timeout = conf->timeout;
if (fast_open == 0) fast_open = conf->fast_open;
#ifdef HAVE_SETRLIMIT
if (nofile == 0) nofile = conf->nofile;
/*
* no need to check the return value here since we will show
* the user an error message if setrlimit(2) fails
*/
if (nofile)
{
if (verbose)
{
LOGD("setting NOFILE to %d", nofile);
}
set_nofile(nofile);
}
#endif
}
if (remote_num == 0 || remote_port == NULL ||
local_port == NULL || password == NULL)
{
usage();
exit(EXIT_FAILURE);
}
if (timeout == NULL) timeout = "10";
if (local_addr == NULL) local_addr = "0.0.0.0";
if (pid_flags)
{
USE_SYSLOG(argv[0]);
daemonize(pid_path);
}
#ifdef __MINGW32__
winsock_init();
#else
// ignore SIGPIPE
signal(SIGPIPE, SIG_IGN);
signal(SIGABRT, SIG_IGN);
#endif
// Setup keys
LOGD("initialize ciphers... %s", method);
int m = enc_init(password, method);
// Setup socket
int listenfd;
listenfd = create_and_bind(local_addr, local_port);
if (listenfd < 0)
{
FATAL("bind() error..");
}
if (listen(listenfd, SOMAXCONN) == -1)
{
FATAL("listen() error.");
}
setnonblocking(listenfd);
LOGD("server listening at port %s.", local_port);
// Setup proxy context
struct listen_ctx listen_ctx;
listen_ctx.remote_num = remote_num;
listen_ctx.remote_addr = malloc(sizeof(ss_addr_t) * remote_num);
while (remote_num > 0)
{
int index = --remote_num;
if (remote_addr[index].port == NULL) remote_addr[index].port = remote_port;
listen_ctx.remote_addr[index] = remote_addr[index];
}
listen_ctx.timeout = atoi(timeout);
listen_ctx.fd = listenfd;
listen_ctx.iface = iface;
listen_ctx.method = m;
struct ev_loop *loop = ev_default_loop(0);
if (!loop)
{
FATAL("ev_loop error.");
}
ev_io_init (&listen_ctx.io, accept_cb, listenfd, EV_READ);
ev_io_start (loop, &listen_ctx.io);
// Setup UDP
if (udprelay)
{
LOGD("udprelay enabled.");
udprelay_init(local_addr, local_port, remote_addr[0].host, remote_addr[0].port, m, listen_ctx.timeout, iface);
}
// setuid
if (user != NULL)
run_as(user);
ev_run (loop, 0);
#ifdef __MINGW32__
winsock_cleanup();
#endif
return 0;
}