You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2198 lines
65 KiB

/*
* local.c - Setup a socks5 proxy through remote shadowsocks server
*
* Copyright (C) 2013 - 2019, Max Lv <max.c.lv@gmail.com>
*
* This file is part of the shadowsocks-libev.
*
* shadowsocks-libev is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* shadowsocks-libev is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with shadowsocks-libev; see the file COPYING. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <locale.h>
#include <signal.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include <getopt.h>
#ifndef __MINGW32__
#include <errno.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <netinet/in.h>
#endif
#ifdef LIB_ONLY
#include "shadowsocks.h"
#endif
#if defined(HAVE_SYS_IOCTL_H) && defined(HAVE_NET_IF_H) && defined(__linux__)
#include <net/if.h>
#include <sys/ioctl.h>
#define SET_INTERFACE
#endif
#include <libcork/core.h>
#include "netutils.h"
#include "utils.h"
#include "socks5.h"
#include "acl.h"
#include "plugin.h"
#include "local.h"
#include "winsock.h"
#ifndef LIB_ONLY
#ifdef __APPLE__
#include <AvailabilityMacros.h>
#if defined(MAC_OS_X_VERSION_10_10) && MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_10
#include <launch.h>
#define HAVE_LAUNCHD
#endif
#endif
#endif
#ifndef EAGAIN
#define EAGAIN EWOULDBLOCK
#endif
#ifndef EWOULDBLOCK
#define EWOULDBLOCK EAGAIN
#endif
int verbose = 0;
int reuse_port = 0;
int tcp_incoming_sndbuf = 0;
int tcp_incoming_rcvbuf = 0;
int tcp_outgoing_sndbuf = 0;
int tcp_outgoing_rcvbuf = 0;
#ifdef __ANDROID__
int vpn = 0;
uint64_t tx = 0;
uint64_t rx = 0;
ev_tstamp last = 0;
char *stat_path = NULL;
#endif
static crypto_t *crypto;
static int acl = 0;
static int mode = TCP_ONLY;
static int ipv6first = 0;
int fast_open = 0;
static int no_delay = 0;
static int udp_fd = 0;
static int ret_val = 0;
static struct ev_signal sigint_watcher;
static struct ev_signal sigterm_watcher;
#ifndef __MINGW32__
static struct ev_signal sigchld_watcher;
static struct ev_signal sigusr1_watcher;
#else
#ifndef LIB_ONLY
static struct plugin_watcher_t {
ev_io io;
SOCKET fd;
uint16_t port;
int valid;
} plugin_watcher;
#endif
#endif
#ifdef HAVE_SETRLIMIT
#ifndef LIB_ONLY
static int nofile = 0;
#endif
#endif
static void server_recv_cb(EV_P_ ev_io *w, int revents);
static void server_send_cb(EV_P_ ev_io *w, int revents);
static void remote_recv_cb(EV_P_ ev_io *w, int revents);
static void remote_send_cb(EV_P_ ev_io *w, int revents);
static void accept_cb(EV_P_ ev_io *w, int revents);
static void signal_cb(EV_P_ ev_signal *w, int revents);
#if defined(__MINGW32__) && !defined(LIB_ONLY)
static void plugin_watcher_cb(EV_P_ ev_io *w, int revents);
#endif
static int create_and_bind(const char *addr, const char *port);
#ifdef HAVE_LAUNCHD
static int launch_or_create(const char *addr, const char *port);
#endif
static remote_t *create_remote(listen_ctx_t *listener, struct sockaddr *addr, int direct);
static void free_remote(remote_t *remote);
static void close_and_free_remote(EV_P_ remote_t *remote);
static void free_server(server_t *server);
static void close_and_free_server(EV_P_ server_t *server);
static remote_t *new_remote(int fd, int timeout);
static server_t *new_server(int fd);
static struct cork_dllist connections;
#ifndef __MINGW32__
int
setnonblocking(int fd)
{
int flags;
if (-1 == (flags = fcntl(fd, F_GETFL, 0))) {
flags = 0;
}
return fcntl(fd, F_SETFL, flags | O_NONBLOCK);
}
#endif
int
create_and_bind(const char *addr, const char *port)
{
struct addrinfo hints;
struct addrinfo *result, *rp;
int s, listen_sock = -1;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC; /* Return IPv4 and IPv6 choices */
hints.ai_socktype = SOCK_STREAM; /* We want a TCP socket */
result = NULL;
s = getaddrinfo(addr, port, &hints, &result);
if (s != 0) {
LOGI("getaddrinfo: %s", gai_strerror(s));
return -1;
}
if (result == NULL) {
LOGE("Could not bind");
return -1;
}
for (rp = result; rp != NULL; rp = rp->ai_next) {
listen_sock = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
if (listen_sock == -1) {
continue;
}
int opt = 1;
setsockopt(listen_sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
#ifdef SO_NOSIGPIPE
setsockopt(listen_sock, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt));
#endif
if (reuse_port) {
int err = set_reuseport(listen_sock);
if (err == 0) {
LOGI("tcp port reuse enabled");
}
}
s = bind(listen_sock, rp->ai_addr, rp->ai_addrlen);
if (s == 0) {
/* We managed to bind successfully! */
break;
} else {
ERROR("bind");
}
close(listen_sock);
listen_sock = -1;
}
freeaddrinfo(result);
return listen_sock;
}
#ifdef HAVE_LAUNCHD
int
launch_or_create(const char *addr, const char *port)
{
int *fds;
size_t cnt;
int error = launch_activate_socket("Listeners", &fds, &cnt);
if (error == 0) {
if (cnt == 1) {
return fds[0];
} else {
FATAL("please don't specify multi entry");
}
} else if (error == ESRCH || error == ENOENT) {
/* ESRCH: The calling process is not managed by launchd(8).
* ENOENT: The socket name specified does not exist
* in the caller's launchd.plist(5).
*/
if (port == NULL) {
usage();
exit(EXIT_FAILURE);
}
return create_and_bind(addr, port);
} else {
FATAL("launch_activate_socket() error");
}
return -1;
}
#endif
static void
free_connections(struct ev_loop *loop)
{
struct cork_dllist_item *curr, *next;
cork_dllist_foreach_void(&connections, curr, next) {
server_t *server = cork_container_of(curr, server_t, entries);
remote_t *remote = server->remote;
close_and_free_server(loop, server);
close_and_free_remote(loop, remote);
}
}
static void
delayed_connect_cb(EV_P_ ev_timer *watcher, int revents)
{
server_t *server = cork_container_of(watcher, server_t,
delayed_connect_watcher);
server_recv_cb(EV_A_ & server->recv_ctx->io, revents);
}
static int
server_handshake_reply(EV_P_ ev_io *w, int udp_assc, struct socks5_response *response)
{
server_ctx_t *server_recv_ctx = (server_ctx_t *)w;
server_t *server = server_recv_ctx->server;
remote_t *remote = server->remote;
if (server->stage != STAGE_HANDSHAKE)
return 0;
struct sockaddr_in sock_addr;
if (udp_assc) {
socklen_t addr_len = sizeof(sock_addr);
if (getsockname(server->fd, (struct sockaddr *)&sock_addr, &addr_len) < 0) {
LOGE("getsockname: %s", strerror(errno));
response->rep = SOCKS5_REP_CONN_REFUSED;
send(server->fd, (char *)response, sizeof(struct socks5_response), 0);
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return -1;
}
} else
memset(&sock_addr, 0, sizeof(sock_addr));
buffer_t resp_to_send;
buffer_t *resp_buf = &resp_to_send;
balloc(resp_buf, SOCKET_BUF_SIZE);
memcpy(resp_buf->data, response, sizeof(struct socks5_response));
memcpy(resp_buf->data + sizeof(struct socks5_response),
&sock_addr.sin_addr, sizeof(sock_addr.sin_addr));
memcpy(resp_buf->data + sizeof(struct socks5_response) +
sizeof(sock_addr.sin_addr),
&sock_addr.sin_port, sizeof(sock_addr.sin_port));
int reply_size = sizeof(struct socks5_response) +
sizeof(sock_addr.sin_addr) + sizeof(sock_addr.sin_port);
int s = send(server->fd, resp_buf->data, reply_size, 0);
bfree(resp_buf);
if (s < reply_size) {
LOGE("failed to send fake reply");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return -1;
}
if (udp_assc) {
// Wait until client closes the connection
return -1;
}
return 0;
}
static int
server_handshake(EV_P_ ev_io *w, buffer_t *buf)
{
server_ctx_t *server_recv_ctx = (server_ctx_t *)w;
server_t *server = server_recv_ctx->server;
remote_t *remote = server->remote;
struct socks5_request *request = (struct socks5_request *)buf->data;
size_t request_len = sizeof(struct socks5_request);
if (buf->len < request_len) {
return -1;
}
struct socks5_response response;
response.ver = SVERSION;
response.rep = SOCKS5_REP_SUCCEEDED;
response.rsv = 0;
response.atyp = SOCKS5_ATYP_IPV4;
if (request->cmd == SOCKS5_CMD_UDP_ASSOCIATE) {
if (verbose) {
LOGI("udp assc request accepted");
}
return server_handshake_reply(EV_A_ w, 1, &response);
} else if (request->cmd != SOCKS5_CMD_CONNECT) {
LOGE("unsupported command: %d", request->cmd);
response.rep = SOCKS5_REP_CMD_NOT_SUPPORTED;
char *send_buf = (char *)&response;
send(server->fd, send_buf, 4, 0);
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return -1;
}
char host[MAX_HOSTNAME_LEN + 1], ip[INET6_ADDRSTRLEN], port[16];
buffer_t *abuf = server->abuf;
abuf->idx = 0;
abuf->len = 0;
abuf->data[abuf->len++] = request->atyp;
int atyp = request->atyp;
// get remote addr and port
if (atyp == SOCKS5_ATYP_IPV4) {
size_t in_addr_len = sizeof(struct in_addr);
if (buf->len < request_len + in_addr_len + 2) {
return -1;
}
memcpy(abuf->data + abuf->len, buf->data + request_len, in_addr_len + 2);
abuf->len += in_addr_len + 2;
if (acl || verbose) {
uint16_t p = load16_be(buf->data + request_len + in_addr_len);
if (!inet_ntop(AF_INET, (const void *)(buf->data + request_len),
ip, INET_ADDRSTRLEN)) {
LOGI("inet_ntop(AF_INET): %s", strerror(errno));
ip[0] = '\0';
}
sprintf(port, "%d", p);
}
} else if (atyp == SOCKS5_ATYP_DOMAIN) {
uint8_t name_len = *(uint8_t *)(buf->data + request_len);
if (buf->len < request_len + 1 + name_len + 2) {
return -1;
}
abuf->data[abuf->len++] = name_len;
memcpy(abuf->data + abuf->len, buf->data + request_len + 1, name_len + 2);
abuf->len += name_len + 2;
if (acl || verbose) {
uint16_t p = load16_be(buf->data + request_len + 1 + name_len);
memcpy(host, buf->data + request_len + 1, name_len);
host[name_len] = '\0';
sprintf(port, "%d", p);
}
} else if (atyp == SOCKS5_ATYP_IPV6) {
size_t in6_addr_len = sizeof(struct in6_addr);
if (buf->len < request_len + in6_addr_len + 2) {
return -1;
}
memcpy(abuf->data + abuf->len, buf->data + request_len, in6_addr_len + 2);
abuf->len += in6_addr_len + 2;
if (acl || verbose) {
uint16_t p = load16_be(buf->data + request_len + in6_addr_len);
if (!inet_ntop(AF_INET6, (const void *)(buf->data + request_len),
ip, INET6_ADDRSTRLEN)) {
LOGI("inet_ntop(AF_INET6): %s", strerror(errno));
ip[0] = '\0';
}
sprintf(port, "%d", p);
}
} else {
LOGE("unsupported addrtype: %d", request->atyp);
response.rep = SOCKS5_REP_ADDRTYPE_NOT_SUPPORTED;
char *send_buf = (char *)&response;
send(server->fd, send_buf, 4, 0);
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return -1;
}
if (server_handshake_reply(EV_A_ w, 0, &response) < 0)
return -1;
server->stage = STAGE_STREAM;
buf->len -= (3 + abuf->len);
if (buf->len > 0) {
memmove(buf->data, buf->data + 3 + abuf->len, buf->len);
}
if (verbose) {
if (atyp == SOCKS5_ATYP_DOMAIN)
LOGI("connect to %s:%s", host, port);
else if (atyp == SOCKS5_ATYP_IPV4)
LOGI("connect to %s:%s", ip, port);
else if (atyp == SOCKS5_ATYP_IPV6)
LOGI("connect to [%s]:%s", ip, port);
}
if (acl
#ifdef __ANDROID__
&& !(vpn && strcmp(port, "53") == 0)
#endif
) {
int bypass = 0;
int resolved = 0;
struct sockaddr_storage storage;
memset(&storage, 0, sizeof(struct sockaddr_storage));
int err;
int host_match = 0;
if (atyp == SOCKS5_ATYP_DOMAIN)
host_match = acl_match_host(host);
if (host_match > 0)
bypass = 1; // bypass hostnames in black list
else if (host_match < 0)
bypass = 0; // proxy hostnames in white list
else {
if (atyp == SOCKS5_ATYP_DOMAIN
#ifdef __ANDROID__
&& !vpn
#endif
) { // resolve domain so we can bypass domain with geoip
if (get_sockaddr(host, port, &storage, 0, ipv6first))
goto not_bypass;
resolved = 1;
switch (((struct sockaddr *)&storage)->sa_family) {
case AF_INET:
{
struct sockaddr_in *addr_in = (struct sockaddr_in *)&storage;
if (!inet_ntop(AF_INET, &(addr_in->sin_addr), ip, INET_ADDRSTRLEN))
goto not_bypass;
break;
}
case AF_INET6:
{
struct sockaddr_in6 *addr_in6 = (struct sockaddr_in6 *)&storage;
if (!inet_ntop(AF_INET6, &(addr_in6->sin6_addr), ip, INET6_ADDRSTRLEN))
goto not_bypass;
break;
}
default:
goto not_bypass;
}
}
int ip_match = (resolved || atyp == SOCKS5_ATYP_IPV4
|| atyp == SOCKS5_ATYP_IPV6) ? acl_match_host(ip) : 0;
switch (get_acl_mode()) {
case BLACK_LIST:
if (ip_match > 0)
bypass = 1; // bypass IPs in black list
break;
case WHITE_LIST:
bypass = 1;
if (ip_match < 0)
bypass = 0; // proxy IPs in white list
break;
}
}
if (bypass) {
if (verbose) {
if (atyp == SOCKS5_ATYP_DOMAIN)
LOGI("bypass %s:%s", host, port);
else if (atyp == 1)
LOGI("bypass %s:%s", ip, port);
else if (atyp == 4)
LOGI("bypass [%s]:%s", ip, port);
}
if (atyp == SOCKS5_ATYP_DOMAIN && !resolved)
#ifdef __ANDROID__
if (vpn)
goto not_bypass;
else
#endif
err = get_sockaddr(host, port, &storage, 0, ipv6first);
else
err = get_sockaddr(ip, port, &storage, 0, ipv6first);
if (err != -1) {
remote = create_remote(server->listener, (struct sockaddr *)&storage, 1);
}
}
}
not_bypass:
// Not bypass
if (remote == NULL) {
remote = create_remote(server->listener, NULL, 0);
}
if (remote == NULL) {
LOGE("invalid remote addr");
close_and_free_server(EV_A_ server);
return -1;
}
if (!remote->direct) {
int err = crypto->encrypt(abuf, server->e_ctx, SOCKET_BUF_SIZE);
if (err) {
LOGE("invalid password or cipher");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return -1;
}
}
if (buf->len > 0) {
memcpy(remote->buf->data, buf->data, buf->len);
remote->buf->len = buf->len;
}
server->remote = remote;
remote->server = server;
if (buf->len > 0) {
return 0;
} else {
ev_timer_start(EV_A_ & server->delayed_connect_watcher);
}
return -1;
}
static void
server_stream(EV_P_ ev_io *w, buffer_t *buf)
{
server_ctx_t *server_recv_ctx = (server_ctx_t *)w;
server_t *server = server_recv_ctx->server;
remote_t *remote = server->remote;
if (remote == NULL) {
LOGE("invalid remote");
close_and_free_server(EV_A_ server);
return;
}
// insert shadowsocks header
if (!remote->direct) {
#ifdef __ANDROID__
tx += remote->buf->len;
#endif
int err = crypto->encrypt(remote->buf, server->e_ctx, SOCKET_BUF_SIZE);
if (err) {
LOGE("invalid password or cipher");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
if (server->abuf) {
bprepend(remote->buf, server->abuf, SOCKET_BUF_SIZE);
bfree(server->abuf);
ss_free(server->abuf);
server->abuf = NULL;
}
}
if (!remote->send_ctx->connected) {
#ifdef __ANDROID__
if (vpn) {
int not_protect = 0;
if (remote->addr.ss_family == AF_INET) {
struct sockaddr_in *s = (struct sockaddr_in *)&remote->addr;
if (s->sin_addr.s_addr == inet_addr("127.0.0.1"))
not_protect = 1;
}
if (!not_protect) {
if (protect_socket(remote->fd) == -1) {
ERROR("protect_socket");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
}
#endif
remote->buf->idx = 0;
if (!fast_open || remote->direct) {
// connecting, wait until connected
int r = connect(remote->fd, (struct sockaddr *)&(remote->addr), remote->addr_len);
if (r == -1 && errno != CONNECT_IN_PROGRESS) {
ERROR("connect");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
// wait on remote connected event
ev_io_stop(EV_A_ & server_recv_ctx->io);
ev_io_start(EV_A_ & remote->send_ctx->io);
ev_timer_start(EV_A_ & remote->send_ctx->watcher);
} else {
#if defined(MSG_FASTOPEN) && !defined(TCP_FASTOPEN_CONNECT)
int s = -1;
s = sendto(remote->fd, remote->buf->data, remote->buf->len, MSG_FASTOPEN,
(struct sockaddr *)&(remote->addr), remote->addr_len);
#elif defined(TCP_FASTOPEN_WINSOCK)
DWORD s = -1;
DWORD err = 0;
do {
int optval = 1;
// Set fast open option
if (setsockopt(remote->fd, IPPROTO_TCP, TCP_FASTOPEN,
&optval, sizeof(optval)) != 0) {
ERROR("setsockopt");
break;
}
// Load ConnectEx function
LPFN_CONNECTEX ConnectEx = winsock_getconnectex();
if (ConnectEx == NULL) {
LOGE("Cannot load ConnectEx() function");
err = WSAENOPROTOOPT;
break;
}
// ConnectEx requires a bound socket
if (winsock_dummybind(remote->fd,
(struct sockaddr *)&(remote->addr)) != 0) {
ERROR("bind");
break;
}
// Call ConnectEx to send data
memset(&remote->olap, 0, sizeof(remote->olap));
remote->connect_ex_done = 0;
if (ConnectEx(remote->fd, (const struct sockaddr *)&(remote->addr),
remote->addr_len, remote->buf->data, remote->buf->len,
&s, &remote->olap)) {
remote->connect_ex_done = 1;
break;
}
// XXX: ConnectEx pending, check later in remote_send
if (WSAGetLastError() == ERROR_IO_PENDING) {
err = CONNECT_IN_PROGRESS;
break;
}
ERROR("ConnectEx");
} while (0);
// Set error number
if (err) {
SetLastError(err);
}
#else
int s = -1;
#if defined(CONNECT_DATA_IDEMPOTENT)
((struct sockaddr_in *)&(remote->addr))->sin_len = sizeof(struct sockaddr_in);
sa_endpoints_t endpoints;
memset((char *)&endpoints, 0, sizeof(endpoints));
endpoints.sae_dstaddr = (struct sockaddr *)&(remote->addr);
endpoints.sae_dstaddrlen = remote->addr_len;
s = connectx(remote->fd, &endpoints, SAE_ASSOCID_ANY,
CONNECT_RESUME_ON_READ_WRITE | CONNECT_DATA_IDEMPOTENT,
NULL, 0, NULL, NULL);
#elif defined(TCP_FASTOPEN_CONNECT)
int optval = 1;
if (setsockopt(remote->fd, IPPROTO_TCP, TCP_FASTOPEN_CONNECT,
(void *)&optval, sizeof(optval)) < 0)
FATAL("failed to set TCP_FASTOPEN_CONNECT");
s = connect(remote->fd, (struct sockaddr *)&(remote->addr), remote->addr_len);
#else
FATAL("fast open is not enabled in this build");
#endif
if (s == 0)
s = send(remote->fd, remote->buf->data, remote->buf->len, 0);
#endif
if (s == -1) {
if (errno == CONNECT_IN_PROGRESS) {
// in progress, wait until connected
remote->buf->idx = 0;
ev_io_stop(EV_A_ & server_recv_ctx->io);
ev_io_start(EV_A_ & remote->send_ctx->io);
return;
} else {
if (errno == EOPNOTSUPP || errno == EPROTONOSUPPORT ||
errno == ENOPROTOOPT) {
LOGE("fast open is not supported on this platform");
// just turn it off
fast_open = 0;
} else {
ERROR("fast_open_connect");
}
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
} else {
remote->buf->len -= s;
remote->buf->idx = s;
ev_io_stop(EV_A_ & server_recv_ctx->io);
ev_io_start(EV_A_ & remote->send_ctx->io);
ev_timer_start(EV_A_ & remote->send_ctx->watcher);
return;
}
}
} else {
int s = send(remote->fd, remote->buf->data, remote->buf->len, 0);
if (s == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// no data, wait for send
remote->buf->idx = 0;
ev_io_stop(EV_A_ & server_recv_ctx->io);
ev_io_start(EV_A_ & remote->send_ctx->io);
return;
} else {
ERROR("server_recv_cb_send");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
} else if (s < (int)(remote->buf->len)) {
remote->buf->len -= s;
remote->buf->idx = s;
ev_io_stop(EV_A_ & server_recv_ctx->io);
ev_io_start(EV_A_ & remote->send_ctx->io);
return;
} else {
remote->buf->idx = 0;
remote->buf->len = 0;
}
}
}
static void
server_recv_cb(EV_P_ ev_io *w, int revents)
{
server_ctx_t *server_recv_ctx = (server_ctx_t *)w;
server_t *server = server_recv_ctx->server;
remote_t *remote = server->remote;
buffer_t *buf;
ssize_t r;
ev_timer_stop(EV_A_ & server->delayed_connect_watcher);
if (remote == NULL) {
buf = server->buf;
} else {
buf = remote->buf;
}
if (revents != EV_TIMER) {
r = recv(server->fd, buf->data + buf->len, SOCKET_BUF_SIZE - buf->len, 0);
if (r == 0) {
// connection closed
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
} else if (r == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// no data
// continue to wait for recv
return;
} else {
if (verbose)
ERROR("server_recv_cb_recv");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
buf->len += r;
}
while (1) {
// local socks5 server
if (server->stage == STAGE_STREAM) {
server_stream(EV_A_ w, buf);
// all processed
return;
} else if (server->stage == STAGE_INIT) {
if (verbose) {
struct sockaddr_in peer_addr;
socklen_t peer_addr_len = sizeof peer_addr;
if (getpeername(server->fd, (struct sockaddr *)&peer_addr, &peer_addr_len) == 0) {
LOGI("connection from %s:%hu", inet_ntoa(peer_addr.sin_addr), ntohs(peer_addr.sin_port));
}
}
if (buf->len < 1)
return;
if (buf->data[0] != SVERSION) {
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
if (buf->len < sizeof(struct method_select_request)) {
return;
}
struct method_select_request *method = (struct method_select_request *)buf->data;
int method_len = method->nmethods + sizeof(struct method_select_request);
if (buf->len < method_len) {
return;
}
struct method_select_response response;
response.ver = SVERSION;
response.method = METHOD_UNACCEPTABLE;
for (int i = 0; i < method->nmethods; i++)
if (method->methods[i] == METHOD_NOAUTH) {
response.method = METHOD_NOAUTH;
break;
}
char *send_buf = (char *)&response;
send(server->fd, send_buf, sizeof(response), 0);
if (response.method == METHOD_UNACCEPTABLE) {
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
server->stage = STAGE_HANDSHAKE;
if (method_len < (int)(buf->len)) {
memmove(buf->data, buf->data + method_len, buf->len - method_len);
buf->len -= method_len;
continue;
}
buf->len = 0;
return;
} else if (server->stage == STAGE_HANDSHAKE) {
int ret = server_handshake(EV_A_ w, buf);
if (ret)
return;
}
}
}
static void
server_send_cb(EV_P_ ev_io *w, int revents)
{
server_ctx_t *server_send_ctx = (server_ctx_t *)w;
server_t *server = server_send_ctx->server;
remote_t *remote = server->remote;
if (server->buf->len == 0) {
// close and free
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
} else {
// has data to send
ssize_t s = send(server->fd, server->buf->data + server->buf->idx,
server->buf->len, 0);
if (s == -1) {
if (errno != EAGAIN && errno != EWOULDBLOCK) {
ERROR("server_send_cb_send");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
return;
} else if (s < (ssize_t)(server->buf->len)) {
// partly sent, move memory, wait for the next time to send
server->buf->len -= s;
server->buf->idx += s;
return;
} else {
// all sent out, wait for reading
server->buf->len = 0;
server->buf->idx = 0;
ev_io_stop(EV_A_ & server_send_ctx->io);
ev_io_start(EV_A_ & remote->recv_ctx->io);
return;
}
}
}
#ifdef __ANDROID__
void
stat_update_cb()
{
ev_tstamp now = ev_time();
if (now - last > 0.5) {
send_traffic_stat(tx, rx);
last = now;
}
}
#endif
static void
remote_timeout_cb(EV_P_ ev_timer *watcher, int revents)
{
remote_ctx_t *remote_ctx
= cork_container_of(watcher, remote_ctx_t, watcher);
remote_t *remote = remote_ctx->remote;
server_t *server = remote->server;
if (verbose) {
LOGI("TCP connection timeout");
}
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
static void
remote_recv_cb(EV_P_ ev_io *w, int revents)
{
remote_ctx_t *remote_recv_ctx = (remote_ctx_t *)w;
remote_t *remote = remote_recv_ctx->remote;
server_t *server = remote->server;
ssize_t r = recv(remote->fd, server->buf->data, SOCKET_BUF_SIZE, 0);
if (r == 0) {
// connection closed
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
} else if (r == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// no data
// continue to wait for recv
return;
} else {
ERROR("remote_recv_cb_recv");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
server->buf->len = r;
if (!remote->direct) {
#ifdef __ANDROID__
rx += server->buf->len;
stat_update_cb();
#endif
int err = crypto->decrypt(server->buf, server->d_ctx, SOCKET_BUF_SIZE);
if (err == CRYPTO_ERROR) {
LOGE("invalid password or cipher");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
} else if (err == CRYPTO_NEED_MORE) {
return; // Wait for more
}
}
int s = send(server->fd, server->buf->data, server->buf->len, 0);
if (s == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// no data, wait for send
server->buf->idx = 0;
ev_io_stop(EV_A_ & remote_recv_ctx->io);
ev_io_start(EV_A_ & server->send_ctx->io);
} else {
ERROR("remote_recv_cb_send");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
} else if (s < (int)(server->buf->len)) {
server->buf->len -= s;
server->buf->idx = s;
ev_io_stop(EV_A_ & remote_recv_ctx->io);
ev_io_start(EV_A_ & server->send_ctx->io);
}
// Disable TCP_NODELAY after the first response are sent
if (!remote->recv_ctx->connected && !no_delay) {
int opt = 0;
setsockopt(server->fd, SOL_TCP, TCP_NODELAY, &opt, sizeof(opt));
setsockopt(remote->fd, SOL_TCP, TCP_NODELAY, &opt, sizeof(opt));
}
remote->recv_ctx->connected = 1;
}
static void
remote_send_cb(EV_P_ ev_io *w, int revents)
{
remote_ctx_t *remote_send_ctx = (remote_ctx_t *)w;
remote_t *remote = remote_send_ctx->remote;
server_t *server = remote->server;
if (!remote_send_ctx->connected) {
#ifdef TCP_FASTOPEN_WINSOCK
if (fast_open) {
// Check if ConnectEx is done
if (!remote->connect_ex_done) {
DWORD numBytes;
DWORD flags;
// Non-blocking way to fetch ConnectEx result
if (WSAGetOverlappedResult(remote->fd, &remote->olap,
&numBytes, FALSE, &flags)) {
remote->buf->len -= numBytes;
remote->buf->idx = numBytes;
remote->connect_ex_done = 1;
} else if (WSAGetLastError() == WSA_IO_INCOMPLETE) {
// XXX: ConnectEx still not connected, wait for next time
return;
} else {
ERROR("WSAGetOverlappedResult");
// not connected
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
// Make getpeername work
if (setsockopt(remote->fd, SOL_SOCKET,
SO_UPDATE_CONNECT_CONTEXT, NULL, 0) != 0) {
ERROR("setsockopt");
}
}
#endif
struct sockaddr_storage addr;
socklen_t len = sizeof addr;
int r = getpeername(remote->fd, (struct sockaddr *)&addr, &len);
if (r == 0) {
remote_send_ctx->connected = 1;
ev_timer_stop(EV_A_ & remote_send_ctx->watcher);
ev_io_start(EV_A_ & remote->recv_ctx->io);
// no need to send any data
if (remote->buf->len == 0) {
ev_io_stop(EV_A_ & remote_send_ctx->io);
ev_io_start(EV_A_ & server->recv_ctx->io);
return;
}
} else {
// not connected
ERROR("getpeername");
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
}
}
if (remote->buf->len == 0) {
// close and free
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
return;
} else {
// has data to send
ssize_t s = send(remote->fd, remote->buf->data + remote->buf->idx,
remote->buf->len, 0);
if (s == -1) {
if (errno != EAGAIN && errno != EWOULDBLOCK) {
ERROR("remote_send_cb_send");
// close and free
close_and_free_remote(EV_A_ remote);
close_and_free_server(EV_A_ server);
}
return;
} else if (s < (ssize_t)(remote->buf->len)) {
// partly sent, move memory, wait for the next time to send
remote->buf->len -= s;
remote->buf->idx += s;
return;
} else {
// all sent out, wait for reading
remote->buf->len = 0;
remote->buf->idx = 0;
ev_io_stop(EV_A_ & remote_send_ctx->io);
ev_io_start(EV_A_ & server->recv_ctx->io);
}
}
}
static remote_t *
new_remote(int fd, int timeout)
{
remote_t *remote;
remote = ss_malloc(sizeof(remote_t));
memset(remote, 0, sizeof(remote_t));
remote->buf = ss_malloc(sizeof(buffer_t));
remote->recv_ctx = ss_malloc(sizeof(remote_ctx_t));
remote->send_ctx = ss_malloc(sizeof(remote_ctx_t));
balloc(remote->buf, SOCKET_BUF_SIZE);
memset(remote->recv_ctx, 0, sizeof(remote_ctx_t));
memset(remote->send_ctx, 0, sizeof(remote_ctx_t));
remote->recv_ctx->connected = 0;
remote->send_ctx->connected = 0;
remote->fd = fd;
remote->recv_ctx->remote = remote;
remote->send_ctx->remote = remote;
ev_io_init(&remote->recv_ctx->io, remote_recv_cb, fd, EV_READ);
ev_io_init(&remote->send_ctx->io, remote_send_cb, fd, EV_WRITE);
ev_timer_init(&remote->send_ctx->watcher, remote_timeout_cb,
min(MAX_CONNECT_TIMEOUT, timeout), 0);
return remote;
}
static void
free_remote(remote_t *remote)
{
if (remote->server != NULL) {
remote->server->remote = NULL;
}
if (remote->buf != NULL) {
bfree(remote->buf);
ss_free(remote->buf);
}
ss_free(remote->recv_ctx);
ss_free(remote->send_ctx);
ss_free(remote);
}
static void
close_and_free_remote(EV_P_ remote_t *remote)
{
if (remote != NULL) {
ev_timer_stop(EV_A_ & remote->send_ctx->watcher);
ev_io_stop(EV_A_ & remote->send_ctx->io);
ev_io_stop(EV_A_ & remote->recv_ctx->io);
close(remote->fd);
free_remote(remote);
}
}
static server_t *
new_server(int fd)
{
server_t *server;
server = ss_malloc(sizeof(server_t));
memset(server, 0, sizeof(server_t));
server->recv_ctx = ss_malloc(sizeof(server_ctx_t));
server->send_ctx = ss_malloc(sizeof(server_ctx_t));
server->buf = ss_malloc(sizeof(buffer_t));
server->abuf = ss_malloc(sizeof(buffer_t));
balloc(server->buf, SOCKET_BUF_SIZE);
balloc(server->abuf, SOCKET_BUF_SIZE);
memset(server->recv_ctx, 0, sizeof(server_ctx_t));
memset(server->send_ctx, 0, sizeof(server_ctx_t));
server->stage = STAGE_INIT;
server->recv_ctx->connected = 0;
server->send_ctx->connected = 0;
server->fd = fd;
server->recv_ctx->server = server;
server->send_ctx->server = server;
server->e_ctx = ss_malloc(sizeof(cipher_ctx_t));
server->d_ctx = ss_malloc(sizeof(cipher_ctx_t));
crypto->ctx_init(crypto->cipher, server->e_ctx, 1);
crypto->ctx_init(crypto->cipher, server->d_ctx, 0);
ev_io_init(&server->recv_ctx->io, server_recv_cb, fd, EV_READ);
ev_io_init(&server->send_ctx->io, server_send_cb, fd, EV_WRITE);
ev_timer_init(&server->delayed_connect_watcher,
delayed_connect_cb, 0.05, 0);
cork_dllist_add(&connections, &server->entries);
return server;
}
static void
free_server(server_t *server)
{
cork_dllist_remove(&server->entries);
if (server->remote != NULL) {
server->remote->server = NULL;
}
if (server->e_ctx != NULL) {
crypto->ctx_release(server->e_ctx);
ss_free(server->e_ctx);
}
if (server->d_ctx != NULL) {
crypto->ctx_release(server->d_ctx);
ss_free(server->d_ctx);
}
if (server->buf != NULL) {
bfree(server->buf);
ss_free(server->buf);
}
if (server->abuf != NULL) {
bfree(server->abuf);
ss_free(server->abuf);
}
ss_free(server->recv_ctx);
ss_free(server->send_ctx);
ss_free(server);
}
static void
close_and_free_server(EV_P_ server_t *server)
{
if (server != NULL) {
ev_io_stop(EV_A_ & server->send_ctx->io);
ev_io_stop(EV_A_ & server->recv_ctx->io);
ev_timer_stop(EV_A_ & server->delayed_connect_watcher);
close(server->fd);
free_server(server);
}
}
static remote_t *
create_remote(listen_ctx_t *listener,
struct sockaddr *addr,
int direct)
{
struct sockaddr *remote_addr;
int index = rand() % listener->remote_num;
if (addr == NULL) {
remote_addr = listener->remote_addr[index];
} else {
remote_addr = addr;
}
int protocol = IPPROTO_TCP;
#ifdef IPPROTO_MPTCP
if (listener->mptcp > 0) {
protocol = IPPROTO_MPTCP;
}
#endif
int remotefd = socket(remote_addr->sa_family, SOCK_STREAM, protocol);
if (remotefd == -1) {
ERROR("socket");
return NULL;
}
int opt = 1;
setsockopt(remotefd, SOL_TCP, TCP_NODELAY, &opt, sizeof(opt));
#ifdef SO_NOSIGPIPE
setsockopt(remotefd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt));
#endif
#ifndef IPPROTO_MPTCP
if (listener->mptcp > 1) {
int err = setsockopt(remotefd, SOL_TCP, listener->mptcp, &opt, sizeof(opt));
if (err == -1) {
ERROR("failed to enable multipath TCP");
}
} else if (listener->mptcp == 1) {
int i = 0;
while ((listener->mptcp = mptcp_enabled_values[i]) > 0) {
int err = setsockopt(remotefd, SOL_TCP, listener->mptcp, &opt, sizeof(opt));
if (err != -1) {
break;
}
i++;
}
if (listener->mptcp == 0) {
ERROR("failed to enable multipath TCP");
}
}
#endif
if (tcp_outgoing_sndbuf > 0) {
setsockopt(remotefd, SOL_SOCKET, SO_SNDBUF, &tcp_outgoing_sndbuf, sizeof(int));
}
if (tcp_outgoing_rcvbuf > 0) {
setsockopt(remotefd, SOL_SOCKET, SO_RCVBUF, &tcp_outgoing_rcvbuf, sizeof(int));
}
// Setup
setnonblocking(remotefd);
#ifdef SET_INTERFACE
if (listener->iface) {
if (setinterface(remotefd, listener->iface) == -1)
ERROR("setinterface");
}
#endif
remote_t *remote = new_remote(remotefd, direct ? MAX_CONNECT_TIMEOUT : listener->timeout);
remote->addr_len = get_sockaddr_len(remote_addr);
memcpy(&(remote->addr), remote_addr, remote->addr_len);
remote->direct = direct;
if (verbose) {
struct sockaddr_in *sockaddr = (struct sockaddr_in *)&remote->addr;
LOGI("remote: %s:%hu", inet_ntoa(sockaddr->sin_addr), ntohs(sockaddr->sin_port));
}
return remote;
}
static void
signal_cb(EV_P_ ev_signal *w, int revents)
{
if (revents & EV_SIGNAL) {
switch (w->signum) {
#ifndef __MINGW32__
case SIGCHLD:
if (!is_plugin_running()) {
LOGE("plugin service exit unexpectedly");
ret_val = -1;
} else
return;
case SIGUSR1:
#endif
case SIGINT:
case SIGTERM:
ev_signal_stop(EV_DEFAULT, &sigint_watcher);
ev_signal_stop(EV_DEFAULT, &sigterm_watcher);
#ifndef __MINGW32__
ev_signal_stop(EV_DEFAULT, &sigchld_watcher);
ev_signal_stop(EV_DEFAULT, &sigusr1_watcher);
#else
#ifndef LIB_ONLY
ev_io_stop(EV_DEFAULT, &plugin_watcher.io);
#endif
#endif
ev_unloop(EV_A_ EVUNLOOP_ALL);
}
}
}
#if defined(__MINGW32__) && !defined(LIB_ONLY)
static void
plugin_watcher_cb(EV_P_ ev_io *w, int revents)
{
char buf[1];
SOCKET fd = accept(plugin_watcher.fd, NULL, NULL);
if (fd == INVALID_SOCKET) {
return;
}
recv(fd, buf, 1, 0);
closesocket(fd);
LOGE("plugin service exit unexpectedly");
ret_val = -1;
ev_signal_stop(EV_DEFAULT, &sigint_watcher);
ev_signal_stop(EV_DEFAULT, &sigterm_watcher);
ev_io_stop(EV_DEFAULT, &plugin_watcher.io);
ev_unloop(EV_A_ EVUNLOOP_ALL);
}
#endif
void
accept_cb(EV_P_ ev_io *w, int revents)
{
listen_ctx_t *listener = (listen_ctx_t *)w;
int serverfd = accept(listener->fd, NULL, NULL);
if (serverfd == -1) {
ERROR("accept");
return;
}
setnonblocking(serverfd);
int opt = 1;
setsockopt(serverfd, SOL_TCP, TCP_NODELAY, &opt, sizeof(opt));
#ifdef SO_NOSIGPIPE
setsockopt(serverfd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt));
#endif
if (tcp_incoming_sndbuf > 0) {
setsockopt(serverfd, SOL_SOCKET, SO_SNDBUF, &tcp_incoming_sndbuf, sizeof(int));
}
if (tcp_incoming_rcvbuf > 0) {
setsockopt(serverfd, SOL_SOCKET, SO_RCVBUF, &tcp_incoming_rcvbuf, sizeof(int));
}
server_t *server = new_server(serverfd);
server->listener = listener;
ev_io_start(EV_A_ & server->recv_ctx->io);
}
#ifndef LIB_ONLY
int
main(int argc, char **argv)
{
int i, c;
int pid_flags = 0;
int mtu = 0;
int mptcp = 0;
char *user = NULL;
char *local_port = NULL;
char *local_addr = NULL;
char *password = NULL;
char *key = NULL;
char *timeout = NULL;
char *method = NULL;
char *pid_path = NULL;
char *conf_path = NULL;
char *iface = NULL;
char *plugin = NULL;
char *plugin_opts = NULL;
char *plugin_host = NULL;
char *plugin_port = NULL;
char tmp_port[8];
int remote_num = 0;
ss_addr_t remote_addr[MAX_REMOTE_NUM];
char *remote_port = NULL;
memset(remote_addr, 0, sizeof(ss_addr_t) * MAX_REMOTE_NUM);
srand(time(NULL));
static struct option long_options[] = {
{ "reuse-port", no_argument, NULL, GETOPT_VAL_REUSE_PORT },
{ "tcp-incoming-sndbuf", required_argument, NULL, GETOPT_VAL_TCP_INCOMING_SNDBUF },
{ "tcp-incoming-rcvbuf", required_argument, NULL, GETOPT_VAL_TCP_INCOMING_RCVBUF },
{ "tcp-outgoing-sndbuf", required_argument, NULL, GETOPT_VAL_TCP_OUTGOING_SNDBUF },
{ "tcp-outgoing-rcvbuf", required_argument, NULL, GETOPT_VAL_TCP_OUTGOING_RCVBUF },
{ "fast-open", no_argument, NULL, GETOPT_VAL_FAST_OPEN },
{ "no-delay", no_argument, NULL, GETOPT_VAL_NODELAY },
{ "acl", required_argument, NULL, GETOPT_VAL_ACL },
{ "mtu", required_argument, NULL, GETOPT_VAL_MTU },
{ "mptcp", no_argument, NULL, GETOPT_VAL_MPTCP },
{ "plugin", required_argument, NULL, GETOPT_VAL_PLUGIN },
{ "plugin-opts", required_argument, NULL, GETOPT_VAL_PLUGIN_OPTS },
{ "password", required_argument, NULL, GETOPT_VAL_PASSWORD },
{ "key", required_argument, NULL, GETOPT_VAL_KEY },
{ "help", no_argument, NULL, GETOPT_VAL_HELP },
{ NULL, 0, NULL, 0 }
};
opterr = 0;
USE_TTY();
#ifdef __ANDROID__
while ((c = getopt_long(argc, argv, "f:s:p:l:k:t:m:i:c:b:a:n:S:huUvV6A",
long_options, NULL)) != -1) {
#else
while ((c = getopt_long(argc, argv, "f:s:p:l:k:t:m:i:c:b:a:n:huUv6A",
long_options, NULL)) != -1) {
#endif
switch (c) {
case GETOPT_VAL_FAST_OPEN:
fast_open = 1;
break;
case GETOPT_VAL_ACL:
LOGI("initializing acl...");
acl = !init_acl(optarg);
break;
case GETOPT_VAL_MTU:
mtu = atoi(optarg);
LOGI("set MTU to %d", mtu);
break;
case GETOPT_VAL_MPTCP:
mptcp = 1;
LOGI("enable multipath TCP");
break;
case GETOPT_VAL_NODELAY:
no_delay = 1;
LOGI("enable TCP no-delay");
break;
case GETOPT_VAL_PLUGIN:
plugin = optarg;
break;
case GETOPT_VAL_PLUGIN_OPTS:
plugin_opts = optarg;
break;
case GETOPT_VAL_KEY:
key = optarg;
break;
case GETOPT_VAL_REUSE_PORT:
reuse_port = 1;
break;
case GETOPT_VAL_TCP_INCOMING_SNDBUF:
tcp_incoming_sndbuf = atoi(optarg);
break;
case GETOPT_VAL_TCP_INCOMING_RCVBUF:
tcp_incoming_rcvbuf = atoi(optarg);
break;
case GETOPT_VAL_TCP_OUTGOING_SNDBUF:
tcp_outgoing_sndbuf = atoi(optarg);
break;
case GETOPT_VAL_TCP_OUTGOING_RCVBUF:
tcp_outgoing_rcvbuf = atoi(optarg);
break;
case 's':
if (remote_num < MAX_REMOTE_NUM) {
parse_addr(optarg, &remote_addr[remote_num++]);
}
break;
case 'p':
remote_port = optarg;
break;
case 'l':
local_port = optarg;
break;
case GETOPT_VAL_PASSWORD:
case 'k':
password = optarg;
break;
case 'f':
pid_flags = 1;
pid_path = optarg;
break;
case 't':
timeout = optarg;
break;
case 'm':
method = optarg;
break;
case 'c':
conf_path = optarg;
break;
case 'i':
iface = optarg;
break;
case 'b':
local_addr = optarg;
break;
case 'a':
user = optarg;
break;
#ifdef HAVE_SETRLIMIT
case 'n':
nofile = atoi(optarg);
break;
#endif
case 'u':
mode = TCP_AND_UDP;
break;
case 'U':
mode = UDP_ONLY;
break;
case 'v':
verbose = 1;
break;
case 'h':
case GETOPT_VAL_HELP:
usage();
exit(EXIT_SUCCESS);
case '6':
ipv6first = 1;
break;
#ifdef __ANDROID__
case 'S':
stat_path = optarg;
break;
case 'V':
vpn = 1;
break;
#endif
case 'A':
FATAL("One time auth has been deprecated. Try AEAD ciphers instead.");
break;
case '?':
// The option character is not recognized.
LOGE("Unrecognized option: %s", optarg);
opterr = 1;
break;
}
}
if (opterr) {
usage();
exit(EXIT_FAILURE);
}
if (argc == 1) {
if (conf_path == NULL) {
conf_path = get_default_conf();
}
}
if (conf_path != NULL) {
jconf_t *conf = read_jconf(conf_path);
if (remote_num == 0) {
remote_num = conf->remote_num;
for (i = 0; i < remote_num; i++)
remote_addr[i] = conf->remote_addr[i];
}
if (remote_port == NULL) {
remote_port = conf->remote_port;
}
if (local_addr == NULL) {
local_addr = conf->local_addr;
}
if (local_port == NULL) {
local_port = conf->local_port;
}
if (password == NULL) {
password = conf->password;
}
if (key == NULL) {
key = conf->key;
}
if (method == NULL) {
method = conf->method;
}
if (timeout == NULL) {
timeout = conf->timeout;
}
if (user == NULL) {
user = conf->user;
}
if (plugin == NULL) {
plugin = conf->plugin;
}
if (plugin_opts == NULL) {
plugin_opts = conf->plugin_opts;
}
if (reuse_port == 0) {
reuse_port = conf->reuse_port;
}
if (tcp_incoming_sndbuf == 0) {
tcp_incoming_sndbuf = conf->tcp_incoming_sndbuf;
}
if (tcp_incoming_rcvbuf == 0) {
tcp_incoming_rcvbuf = conf->tcp_incoming_rcvbuf;
}
if (tcp_outgoing_sndbuf == 0) {
tcp_outgoing_sndbuf = conf->tcp_outgoing_sndbuf;
}
if (tcp_outgoing_rcvbuf == 0) {
tcp_outgoing_rcvbuf = conf->tcp_outgoing_rcvbuf;
}
if (fast_open == 0) {
fast_open = conf->fast_open;
}
if (mode == TCP_ONLY) {
mode = conf->mode;
}
if (mtu == 0) {
mtu = conf->mtu;
}
if (mptcp == 0) {
mptcp = conf->mptcp;
}
if (no_delay == 0) {
no_delay = conf->no_delay;
}
#ifdef HAVE_SETRLIMIT
if (nofile == 0) {
nofile = conf->nofile;
}
#endif
if (ipv6first == 0) {
ipv6first = conf->ipv6_first;
}
if (acl == 0 && conf->acl != NULL) {
LOGI("initializing acl...");
acl = !init_acl(conf->acl);
}
}
if (remote_num == 0) {
fprintf(stderr, "remote_num is 0\n");
exit(EXIT_FAILURE);
}
if (!remote_port) {
fprintf(stderr, "remote_port is NULL\n");
exit(EXIT_FAILURE);
}
#ifndef HAVE_LAUNCHD
if (!local_port) {
fprintf(stderr, "local_port is NULL\n");
exit(EXIT_FAILURE);
}
#endif
if (!password && !key) {
fprintf(stderr, "both password and key are NULL\n");
exit(EXIT_FAILURE);
}
#ifdef __MINGW32__
winsock_init();
#endif
if (tcp_incoming_sndbuf != 0 && tcp_incoming_sndbuf < SOCKET_BUF_SIZE) {
tcp_incoming_sndbuf = 0;
}
if (tcp_incoming_sndbuf != 0) {
LOGI("set TCP incoming connection send buffer size to %d", tcp_incoming_sndbuf);
}
if (tcp_incoming_rcvbuf != 0 && tcp_incoming_rcvbuf < SOCKET_BUF_SIZE) {
tcp_incoming_rcvbuf = 0;
}
if (tcp_incoming_rcvbuf != 0) {
LOGI("set TCP incoming connection receive buffer size to %d", tcp_incoming_rcvbuf);
}
if (tcp_outgoing_sndbuf != 0 && tcp_outgoing_sndbuf < SOCKET_BUF_SIZE) {
tcp_outgoing_sndbuf = 0;
}
if (tcp_outgoing_sndbuf != 0) {
LOGI("set TCP outgoing connection send buffer size to %d", tcp_outgoing_sndbuf);
}
if (tcp_outgoing_rcvbuf != 0 && tcp_outgoing_rcvbuf < SOCKET_BUF_SIZE) {
tcp_outgoing_rcvbuf = 0;
}
if (tcp_outgoing_rcvbuf != 0) {
LOGI("set TCP outgoing connection receive buffer size to %d", tcp_outgoing_rcvbuf);
}
if (plugin != NULL) {
uint16_t port = get_local_port();
if (port == 0) {
FATAL("failed to find a free port");
}
snprintf(tmp_port, 8, "%d", port);
if (is_ipv6only(remote_addr, remote_num, ipv6first)) {
plugin_host = "::1";
} else {
plugin_host = "127.0.0.1";
}
plugin_port = tmp_port;
#ifdef __MINGW32__
memset(&plugin_watcher, 0, sizeof(plugin_watcher));
plugin_watcher.port = get_local_port();
if (plugin_watcher.port == 0) {
LOGE("failed to assign a control port for plugin");
}
#endif
LOGI("plugin \"%s\" enabled", plugin);
}
if (method == NULL) {
method = "chacha20-ietf-poly1305";
}
if (timeout == NULL) {
timeout = "60";
}
#ifdef HAVE_SETRLIMIT
/*
* no need to check the return value here since we will show
* the user an error message if setrlimit(2) fails
*/
if (nofile > 1024) {
if (verbose) {
LOGI("setting NOFILE to %d", nofile);
}
set_nofile(nofile);
}
#endif
if (local_addr == NULL) {
if (is_ipv6only(remote_addr, remote_num, ipv6first)) {
local_addr = "::1";
} else {
local_addr = "127.0.0.1";
}
}
USE_SYSLOG(argv[0], pid_flags);
if (pid_flags) {
daemonize(pid_path);
}
if (fast_open == 1) {
#ifdef TCP_FASTOPEN
LOGI("using tcp fast open");
#else
LOGE("tcp fast open is not supported by this environment");
fast_open = 0;
#endif
}
if (no_delay) {
LOGI("enable TCP no-delay");
}
if (ipv6first) {
LOGI("resolving hostname to IPv6 address first");
}
#ifdef __MINGW32__
// Listen on plugin control port
if (plugin != NULL && plugin_watcher.port != 0) {
SOCKET fd;
fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (fd != INVALID_SOCKET) {
plugin_watcher.valid = 0;
do {
struct sockaddr_in addr;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
addr.sin_port = htons(plugin_watcher.port);
if (bind(fd, (struct sockaddr *)&addr, sizeof(addr))) {
LOGE("failed to bind plugin control port");
break;
}
if (listen(fd, 1)) {
LOGE("failed to listen on plugin control port");
break;
}
plugin_watcher.fd = fd;
ev_io_init(&plugin_watcher.io, plugin_watcher_cb, fd, EV_READ);
ev_io_start(EV_DEFAULT, &plugin_watcher.io);
plugin_watcher.valid = 1;
} while (0);
if (!plugin_watcher.valid) {
closesocket(fd);
plugin_watcher.port = 0;
}
}
}
#endif
if (plugin != NULL) {
int len = 0;
size_t buf_size = 256 * remote_num;
char *remote_str = ss_malloc(buf_size);
snprintf(remote_str, buf_size, "%s", remote_addr[0].host);
len = strlen(remote_str);
for (int i = 1; i < remote_num; i++) {
snprintf(remote_str + len, buf_size - len, "|%s", remote_addr[i].host);
len = strlen(remote_str);
}
int err = start_plugin(plugin, plugin_opts, remote_str,
remote_port, plugin_host, plugin_port,
#ifdef __MINGW32__
plugin_watcher.port,
#endif
MODE_CLIENT);
if (err) {
ERROR("start_plugin");
FATAL("failed to start the plugin");
}
}
#ifndef __MINGW32__
// ignore SIGPIPE
signal(SIGPIPE, SIG_IGN);
signal(SIGABRT, SIG_IGN);
#endif
// Setup keys
LOGI("initializing ciphers... %s", method);
crypto = crypto_init(password, key, method);
if (crypto == NULL)
FATAL("failed to initialize ciphers");
// Setup proxy context
listen_ctx_t listen_ctx;
listen_ctx.remote_num = 0;
listen_ctx.remote_addr = ss_malloc(sizeof(struct sockaddr *) * remote_num);
memset(listen_ctx.remote_addr, 0, sizeof(struct sockaddr *) * remote_num);
for (i = 0; i < remote_num; i++) {
char *host = remote_addr[i].host;
char *port = remote_addr[i].port == NULL ? remote_port :
remote_addr[i].port;
if (plugin != NULL) {
host = plugin_host;
port = plugin_port;
}
struct sockaddr_storage *storage = ss_malloc(sizeof(struct sockaddr_storage));
memset(storage, 0, sizeof(struct sockaddr_storage));
if (get_sockaddr(host, port, storage, 1, ipv6first) == -1) {
FATAL("failed to resolve the provided hostname");
}
listen_ctx.remote_addr[i] = (struct sockaddr *)storage;
++listen_ctx.remote_num;
if (plugin != NULL)
break;
}
listen_ctx.timeout = atoi(timeout);
listen_ctx.iface = iface;
listen_ctx.mptcp = mptcp;
// Setup signal handler
ev_signal_init(&sigint_watcher, signal_cb, SIGINT);
ev_signal_init(&sigterm_watcher, signal_cb, SIGTERM);
ev_signal_start(EV_DEFAULT, &sigint_watcher);
ev_signal_start(EV_DEFAULT, &sigterm_watcher);
#ifndef __MINGW32__
ev_signal_init(&sigchld_watcher, signal_cb, SIGCHLD);
ev_signal_start(EV_DEFAULT, &sigchld_watcher);
#endif
if (ss_is_ipv6addr(local_addr))
LOGI("listening at [%s]:%s", local_addr, local_port);
else
LOGI("listening at %s:%s", local_addr, local_port);
struct ev_loop *loop = EV_DEFAULT;
if (mode != UDP_ONLY) {
// Setup socket
int listenfd;
#ifdef HAVE_LAUNCHD
listenfd = launch_or_create(local_addr, local_port);
#else
listenfd = create_and_bind(local_addr, local_port);
#endif
if (listenfd == -1) {
FATAL("bind() error");
}
if (listen(listenfd, SOMAXCONN) == -1) {
FATAL("listen() error");
}
setnonblocking(listenfd);
listen_ctx.fd = listenfd;
ev_io_init(&listen_ctx.io, accept_cb, listenfd, EV_READ);
ev_io_start(loop, &listen_ctx.io);
}
// Setup UDP
if (mode != TCP_ONLY) {
LOGI("udprelay enabled");
char *host = remote_addr[0].host;
char *port = remote_addr[0].port == NULL ? remote_port : remote_addr[0].port;
struct sockaddr_storage *storage = ss_malloc(sizeof(struct sockaddr_storage));
memset(storage, 0, sizeof(struct sockaddr_storage));
if (get_sockaddr(host, port, storage, 1, ipv6first) == -1) {
FATAL("failed to resolve the provided hostname");
}
struct sockaddr *addr = (struct sockaddr *)storage;
udp_fd = init_udprelay(local_addr, local_port, addr,
get_sockaddr_len(addr), mtu, crypto, listen_ctx.timeout, iface);
}
#ifdef HAVE_LAUNCHD
if (local_port == NULL)
LOGI("listening through launchd");
else
#endif
#ifndef __MINGW32__
// setuid
if (user != NULL && !run_as(user)) {
FATAL("failed to switch user");
}
if (geteuid() == 0) {
LOGI("running from root user");
}
#endif
// Init connections
cork_dllist_init(&connections);
// Enter the loop
ev_run(loop, 0);
if (verbose) {
LOGI("closed gracefully");
}
// Clean up
if (plugin != NULL) {
stop_plugin();
}
if (mode != UDP_ONLY) {
ev_io_stop(loop, &listen_ctx.io);
free_connections(loop);
for (i = 0; i < listen_ctx.remote_num; i++)
ss_free(listen_ctx.remote_addr[i]);
ss_free(listen_ctx.remote_addr);
}
if (mode != TCP_ONLY) {
free_udprelay();
}
#ifdef __MINGW32__
if (plugin_watcher.valid) {
closesocket(plugin_watcher.fd);
}
winsock_cleanup();
#endif
return ret_val;
}
#else
int
_start_ss_local_server(profile_t profile, ss_local_callback callback, void *udata)
{
srand(time(NULL));
char *remote_host = profile.remote_host;
char *local_addr = profile.local_addr;
char *method = profile.method;
char *password = profile.password;
char *log = profile.log;
int remote_port = profile.remote_port;
int local_port = profile.local_port;
int timeout = profile.timeout;
int mtu = 0;
int mptcp = 0;
mode = profile.mode;
fast_open = profile.fast_open;
verbose = profile.verbose;
mtu = profile.mtu;
mptcp = profile.mptcp;
char local_port_str[16];
char remote_port_str[16];
sprintf(local_port_str, "%d", local_port);
sprintf(remote_port_str, "%d", remote_port);
#ifdef __MINGW32__
winsock_init();
#endif
USE_LOGFILE(log);
if (profile.acl != NULL) {
LOGI("initializing acl...");
acl = !init_acl(profile.acl);
}
if (local_addr == NULL) {
local_addr = "127.0.0.1";
}
#ifndef __MINGW32__
// ignore SIGPIPE
signal(SIGPIPE, SIG_IGN);
signal(SIGABRT, SIG_IGN);
#endif
ev_signal_init(&sigint_watcher, signal_cb, SIGINT);
ev_signal_init(&sigterm_watcher, signal_cb, SIGTERM);
ev_signal_start(EV_DEFAULT, &sigint_watcher);
ev_signal_start(EV_DEFAULT, &sigterm_watcher);
#ifndef __MINGW32__
ev_signal_init(&sigusr1_watcher, signal_cb, SIGUSR1);
ev_signal_start(EV_DEFAULT, &sigusr1_watcher);
#endif
// Setup keys
LOGI("initializing ciphers... %s", method);
crypto = crypto_init(password, NULL, method);
if (crypto == NULL)
FATAL("failed to init ciphers");
struct sockaddr_storage storage;
memset(&storage, 0, sizeof(struct sockaddr_storage));
if (get_sockaddr(remote_host, remote_port_str, &storage, 0, ipv6first) == -1) {
return -1;
}
// Setup proxy context
struct ev_loop *loop = EV_DEFAULT;
struct sockaddr *remote_addr_tmp[MAX_REMOTE_NUM];
listen_ctx_t listen_ctx;
listen_ctx.remote_num = 1;
listen_ctx.remote_addr = remote_addr_tmp;
listen_ctx.remote_addr[0] = (struct sockaddr *)(&storage);
listen_ctx.timeout = timeout;
listen_ctx.iface = NULL;
listen_ctx.mptcp = mptcp;
if (ss_is_ipv6addr(local_addr))
LOGI("listening at [%s]:%s", local_addr, local_port_str);
else
LOGI("listening at %s:%s", local_addr, local_port_str);
if (mode != UDP_ONLY) {
// Setup socket
int listenfd;
listenfd = create_and_bind(local_addr, local_port_str);
if (listenfd == -1) {
ERROR("bind()");
return -1;
}
if (listen(listenfd, SOMAXCONN) == -1) {
ERROR("listen()");
return -1;
}
setnonblocking(listenfd);
listen_ctx.fd = listenfd;
ev_io_init(&listen_ctx.io, accept_cb, listenfd, EV_READ);
ev_io_start(loop, &listen_ctx.io);
}
// Setup UDP
if (mode != TCP_ONLY) {
LOGI("udprelay enabled");
struct sockaddr *addr = (struct sockaddr *)(&storage);
udp_fd = init_udprelay(local_addr, local_port_str, addr,
get_sockaddr_len(addr), mtu, crypto, timeout, NULL);
}
// Init connections
cork_dllist_init(&connections);
if (callback) {
callback(listen_ctx.fd, udp_fd, udata);
}
// Enter the loop
ev_run(loop, 0);
if (verbose) {
LOGI("closed gracefully");
}
// Clean up
if (mode != UDP_ONLY) {
ev_io_stop(loop, &listen_ctx.io);
free_connections(loop);
close(listen_ctx.fd);
}
if (mode != TCP_ONLY) {
free_udprelay();
}
#ifdef __MINGW32__
winsock_cleanup();
#endif
return ret_val;
}
int
start_ss_local_server(profile_t profile)
{
return _start_ss_local_server(profile, NULL, NULL);
}
int
start_ss_local_server_with_callback(profile_t profile, ss_local_callback callback, void *udata)
{
return _start_ss_local_server(profile, callback, udata);
}
#endif