/* * local.c - Setup a socks5 proxy through remote shadowsocks server * * Copyright (C) 2013 - 2015, Max Lv * * This file is part of the shadowsocks-libev. * * shadowsocks-libev is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * shadowsocks-libev is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with shadowsocks-libev; see the file COPYING. If not, see * . */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include #include #include #ifndef __MINGW32__ #include #include #include #include #include #include #endif #ifdef LIB_ONLY #include #include "shadowsocks.h" #endif #if defined(HAVE_SYS_IOCTL_H) && defined(HAVE_NET_IF_H) && defined(__linux__) #include #include #define SET_INTERFACE #endif #include #include #ifdef __MINGW32__ #include "win32.h" #endif #include "netutils.h" #include "utils.h" #include "socks5.h" #include "acl.h" #include "local.h" #ifndef EAGAIN #define EAGAIN EWOULDBLOCK #endif #ifndef EWOULDBLOCK #define EWOULDBLOCK EAGAIN #endif #ifndef BUF_SIZE #define BUF_SIZE 2048 #endif int verbose = 0; #ifdef ANDROID int vpn = 0; #endif static int acl = 0; static int mode = TCP_ONLY; static int fast_open = 0; #ifdef HAVE_SETRLIMIT #ifndef LIB_ONLY static int nofile = 0; #endif #endif static int auth = 0; static void server_recv_cb(EV_P_ ev_io *w, int revents); static void server_send_cb(EV_P_ ev_io *w, int revents); static void remote_recv_cb(EV_P_ ev_io *w, int revents); static void remote_send_cb(EV_P_ ev_io *w, int revents); static void accept_cb(EV_P_ ev_io *w, int revents); static void signal_cb(EV_P_ ev_signal *w, int revents); static int create_and_bind(const char *addr, const char *port); static struct remote * create_remote(struct listen_ctx *listener, struct sockaddr *addr); static void free_remote(struct remote *remote); static void close_and_free_remote(EV_P_ struct remote *remote); static void free_server(struct server *server); static void close_and_free_server(EV_P_ struct server *server); static struct remote * new_remote(int fd, int timeout); static struct server * new_server(int fd, int method); static struct cork_dllist connections; #ifndef __MINGW32__ int setnonblocking(int fd) { int flags; if (-1 == (flags = fcntl(fd, F_GETFL, 0))) { flags = 0; } return fcntl(fd, F_SETFL, flags | O_NONBLOCK); } #endif #ifdef SET_INTERFACE int setinterface(int socket_fd, const char * interface_name) { struct ifreq interface; memset(&interface, 0, sizeof(interface)); strncpy(interface.ifr_name, interface_name, IFNAMSIZ); int res = setsockopt(socket_fd, SOL_SOCKET, SO_BINDTODEVICE, &interface, sizeof(struct ifreq)); return res; } #endif int create_and_bind(const char *addr, const char *port) { struct addrinfo hints; struct addrinfo *result, *rp; int s, listen_sock; memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_UNSPEC; /* Return IPv4 and IPv6 choices */ hints.ai_socktype = SOCK_STREAM; /* We want a TCP socket */ s = getaddrinfo(addr, port, &hints, &result); if (s != 0) { LOGI("getaddrinfo: %s", gai_strerror(s)); return -1; } for (rp = result; rp != NULL; rp = rp->ai_next) { listen_sock = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); if (listen_sock == -1) { continue; } int opt = 1; setsockopt(listen_sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)); #ifdef SO_NOSIGPIPE setsockopt(listen_sock, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt)); #endif s = bind(listen_sock, rp->ai_addr, rp->ai_addrlen); if (s == 0) { /* We managed to bind successfully! */ break; } else { ERROR("bind"); } close(listen_sock); } if (rp == NULL) { LOGE("Could not bind"); return -1; } freeaddrinfo(result); return listen_sock; } static void free_connections(struct ev_loop *loop) { struct cork_dllist_item *curr; for (curr = cork_dllist_start(&connections); !cork_dllist_is_end(&connections, curr); curr = curr->next) { struct server *server = cork_container_of(curr, struct server, entries); struct remote *remote = server->remote; close_and_free_server(loop, server); close_and_free_remote(loop, remote); } } static void server_recv_cb(EV_P_ ev_io *w, int revents) { struct server_ctx *server_recv_ctx = (struct server_ctx *)w; struct server *server = server_recv_ctx->server; struct remote *remote = server->remote; char *buf; if (remote == NULL) { buf = server->buf; } else { buf = remote->buf; } ssize_t r; r = recv(server->fd, buf, BUF_SIZE, 0); if (r == 0) { // connection closed close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else if (r < 0) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data // continue to wait for recv return; } else { ERROR("server_recv_cb_recv"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } while (1) { // local socks5 server if (server->stage == 5) { if (remote == NULL) { LOGE("invalid remote"); close_and_free_server(EV_A_ server); return; } if (!remote->direct && remote->send_ctx->connected && auth) { remote->buf = ss_gen_hash(remote->buf, &r, &remote->counter, server->e_ctx, BUF_SIZE); } // insert shadowsocks header if (!remote->direct) { remote->buf = ss_encrypt(BUF_SIZE, remote->buf, &r, server->e_ctx); if (remote->buf == NULL) { LOGE("invalid password or cipher"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } if (!remote->send_ctx->connected) { #ifdef ANDROID if (vpn) { if (protect_socket(remote->fd) == -1) { ERROR("protect_socket"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } #endif remote->buf_idx = 0; remote->buf_len = r; if (!fast_open || remote->direct) { // connecting, wait until connected connect(remote->fd, (struct sockaddr *)&(remote->addr), remote->addr_len); // wait on remote connected event ev_io_stop(EV_A_ & server_recv_ctx->io); ev_io_start(EV_A_ & remote->send_ctx->io); ev_timer_start(EV_A_ & remote->send_ctx->watcher); } else { #ifdef TCP_FASTOPEN int s = sendto(remote->fd, remote->buf, r, MSG_FASTOPEN, (struct sockaddr *)&(remote->addr), remote->addr_len); if (s == -1) { if (errno == EINPROGRESS) { // in progress, wait until connected remote->buf_idx = 0; remote->buf_len = r; ev_io_stop(EV_A_ & server_recv_ctx->io); ev_io_start(EV_A_ & remote->send_ctx->io); return; } else { ERROR("sendto"); if (errno == ENOTCONN) { LOGE( "fast open is not supported on this platform"); // just turn it off fast_open = 0; } close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } else if (s < r) { remote->buf_len = r - s; remote->buf_idx = s; } // Just connected remote->send_ctx->connected = 1; ev_timer_stop(EV_A_ & remote->send_ctx->watcher); ev_io_start(EV_A_ & remote->recv_ctx->io); #else // if TCP_FASTOPEN is not defined, fast_open will always be 0 LOGE("can't come here"); exit(1); #endif } } else { int s = send(remote->fd, remote->buf, r, 0); if (s == -1) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data, wait for send remote->buf_idx = 0; remote->buf_len = r; ev_io_stop(EV_A_ & server_recv_ctx->io); ev_io_start(EV_A_ & remote->send_ctx->io); return; } else { ERROR("server_recv_cb_send"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } else if (s < r) { remote->buf_len = r - s; remote->buf_idx = s; ev_io_stop(EV_A_ & server_recv_ctx->io); ev_io_start(EV_A_ & remote->send_ctx->io); return; } } // all processed return; } else if (server->stage == 0) { struct method_select_response response; response.ver = SVERSION; response.method = 0; char *send_buf = (char *)&response; send(server->fd, send_buf, sizeof(response), 0); server->stage = 1; return; } else if (server->stage == 1) { struct socks5_request *request = (struct socks5_request *)buf; struct sockaddr_in sock_addr; memset(&sock_addr, 0, sizeof(sock_addr)); int udp_assc = 0; if (mode != TCP_ONLY && request->cmd == 3) { udp_assc = 1; socklen_t addr_len = sizeof(sock_addr); getsockname(server->fd, (struct sockaddr *)&sock_addr, &addr_len); if (verbose) { LOGI("udp assc request accepted"); } } else if (request->cmd != 1) { LOGE("unsupported cmd: %d", request->cmd); struct socks5_response response; response.ver = SVERSION; response.rep = CMD_NOT_SUPPORTED; response.rsv = 0; response.atyp = 1; char *send_buf = (char *)&response; send(server->fd, send_buf, 4, 0); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else { char host[256], port[16]; char ss_addr_to_send[320]; ssize_t addr_len = 0; ss_addr_to_send[addr_len++] = request->atyp; // get remote addr and port if (request->atyp == 1) { // IP V4 size_t in_addr_len = sizeof(struct in_addr); memcpy(ss_addr_to_send + addr_len, buf + 4, in_addr_len + 2); addr_len += in_addr_len + 2; if (acl || verbose) { uint16_t p = ntohs(*(uint16_t *)(buf + 4 + in_addr_len)); dns_ntop(AF_INET, (const void *)(buf + 4), host, INET_ADDRSTRLEN); sprintf(port, "%d", p); } } else if (request->atyp == 3) { // Domain name uint8_t name_len = *(uint8_t *)(buf + 4); ss_addr_to_send[addr_len++] = name_len; memcpy(ss_addr_to_send + addr_len, buf + 4 + 1, name_len + 2); addr_len += name_len + 2; if (acl || verbose) { uint16_t p = ntohs(*(uint16_t *)(buf + 4 + 1 + name_len)); memcpy(host, buf + 4 + 1, name_len); host[name_len] = '\0'; sprintf(port, "%d", p); } } else if (request->atyp == 4) { // IP V6 size_t in6_addr_len = sizeof(struct in6_addr); memcpy(ss_addr_to_send + addr_len, buf + 4, in6_addr_len + 2); addr_len += in6_addr_len + 2; if (acl || verbose) { uint16_t p = ntohs(*(uint16_t *)(buf + 4 + in6_addr_len)); dns_ntop(AF_INET6, (const void *)(buf + 4), host, INET6_ADDRSTRLEN); sprintf(port, "%d", p); } } else { LOGE("unsupported addrtype: %d", request->atyp); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } server->stage = 5; r -= (3 + addr_len); buf += (3 + addr_len); if (verbose) { LOGI("connect to %s:%s", host, port); } if ((acl && (request->atyp == 1 || request->atyp == 4) && acl_contains_ip(host))) { if (verbose) { LOGI("bypass %s:%s", host, port); } struct sockaddr_storage storage; memset(&storage, 0, sizeof(struct sockaddr_storage)); if (get_sockaddr(host, port, &storage, 0) != -1) { remote = create_remote(server->listener, (struct sockaddr *)&storage); remote->direct = 1; } } else { remote = create_remote(server->listener, NULL); } if (remote == NULL) { LOGE("invalid remote addr"); close_and_free_server(EV_A_ server); return; } if (!remote->direct) { if (auth) { ss_addr_to_send[0] |= ONETIMEAUTH_FLAG; ss_onetimeauth(ss_addr_to_send + addr_len, ss_addr_to_send, addr_len, server->e_ctx->evp.iv); addr_len += ONETIMEAUTH_BYTES; } memcpy(remote->buf, ss_addr_to_send, addr_len); if (r > 0) { if (auth) { buf = ss_gen_hash(buf, &r, &remote->counter, server->e_ctx, BUF_SIZE); } memcpy(remote->buf + addr_len, buf, r); } r += addr_len; } else { if (r > 0) { memcpy(remote->buf, buf, r); } } server->remote = remote; remote->server = server; } // Fake reply struct socks5_response response; response.ver = SVERSION; response.rep = 0; response.rsv = 0; response.atyp = 1; memcpy(server->buf, &response, sizeof(struct socks5_response)); memcpy(server->buf + sizeof(struct socks5_response), &sock_addr.sin_addr, sizeof(sock_addr.sin_addr)); memcpy(server->buf + sizeof(struct socks5_response) + sizeof(sock_addr.sin_addr), &sock_addr.sin_port, sizeof(sock_addr.sin_port)); int reply_size = sizeof(struct socks5_response) + sizeof(sock_addr.sin_addr) + sizeof(sock_addr.sin_port); int s = send(server->fd, server->buf, reply_size, 0); if (s < reply_size) { LOGE("failed to send fake reply"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } if (udp_assc) { close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } } } static void server_send_cb(EV_P_ ev_io *w, int revents) { struct server_ctx *server_send_ctx = (struct server_ctx *)w; struct server *server = server_send_ctx->server; struct remote *remote = server->remote; if (server->buf_len == 0) { // close and free close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else { // has data to send ssize_t s = send(server->fd, server->buf + server->buf_idx, server->buf_len, 0); if (s < 0) { if (errno != EAGAIN && errno != EWOULDBLOCK) { ERROR("server_send_cb_send"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } return; } else if (s < server->buf_len) { // partly sent, move memory, wait for the next time to send server->buf_len -= s; server->buf_idx += s; return; } else { // all sent out, wait for reading server->buf_len = 0; server->buf_idx = 0; ev_io_stop(EV_A_ & server_send_ctx->io); ev_io_start(EV_A_ & remote->recv_ctx->io); } } } static void remote_timeout_cb(EV_P_ ev_timer *watcher, int revents) { struct remote_ctx *remote_ctx = (struct remote_ctx *)(((void *)watcher) - sizeof(ev_io)); struct remote *remote = remote_ctx->remote; struct server *server = remote->server; if (verbose) { LOGI("TCP connection timeout"); } close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } static void remote_recv_cb(EV_P_ ev_io *w, int revents) { struct remote_ctx *remote_recv_ctx = (struct remote_ctx *)w; struct remote *remote = remote_recv_ctx->remote; struct server *server = remote->server; ev_timer_again(EV_A_ & remote->recv_ctx->watcher); ssize_t r = recv(remote->fd, server->buf, BUF_SIZE, 0); if (r == 0) { // connection closed close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else if (r < 0) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data // continue to wait for recv return; } else { ERROR("remote_recv_cb_recv"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } if (!remote->direct) { server->buf = ss_decrypt(BUF_SIZE, server->buf, &r, server->d_ctx); if (server->buf == NULL) { LOGE("invalid password or cipher"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } int s = send(server->fd, server->buf, r, 0); if (s == -1) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data, wait for send server->buf_len = r; server->buf_idx = 0; ev_io_stop(EV_A_ & remote_recv_ctx->io); ev_io_start(EV_A_ & server->send_ctx->io); return; } else { ERROR("remote_recv_cb_send"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } else if (s < r) { server->buf_len = r - s; server->buf_idx = s; ev_io_stop(EV_A_ & remote_recv_ctx->io); ev_io_start(EV_A_ & server->send_ctx->io); return; } } static void remote_send_cb(EV_P_ ev_io *w, int revents) { struct remote_ctx *remote_send_ctx = (struct remote_ctx *)w; struct remote *remote = remote_send_ctx->remote; struct server *server = remote->server; if (!remote_send_ctx->connected) { struct sockaddr_storage addr; socklen_t len = sizeof addr; int r = getpeername(remote->fd, (struct sockaddr *)&addr, &len); if (r == 0) { remote_send_ctx->connected = 1; ev_timer_stop(EV_A_ & remote_send_ctx->watcher); ev_timer_start(EV_A_ & remote->recv_ctx->watcher); ev_io_start(EV_A_ & remote->recv_ctx->io); // no need to send any data if (remote->buf_len == 0) { ev_io_stop(EV_A_ & remote_send_ctx->io); ev_io_start(EV_A_ & server->recv_ctx->io); return; } } else { // not connected ERROR("getpeername"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } if (remote->buf_len == 0) { // close and free close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else { // has data to send ssize_t s = send(remote->fd, remote->buf + remote->buf_idx, remote->buf_len, 0); if (s < 0) { if (errno != EAGAIN && errno != EWOULDBLOCK) { ERROR("remote_send_cb_send"); // close and free close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } return; } else if (s < remote->buf_len) { // partly sent, move memory, wait for the next time to send remote->buf_len -= s; remote->buf_idx += s; return; } else { // all sent out, wait for reading remote->buf_len = 0; remote->buf_idx = 0; ev_io_stop(EV_A_ & remote_send_ctx->io); ev_io_start(EV_A_ & server->recv_ctx->io); } } } static struct remote * new_remote(int fd, int timeout) { struct remote *remote; remote = malloc(sizeof(struct remote)); memset(remote, 0, sizeof(struct remote)); remote->buf = malloc(BUF_SIZE); remote->recv_ctx = malloc(sizeof(struct remote_ctx)); remote->send_ctx = malloc(sizeof(struct remote_ctx)); remote->recv_ctx->connected = 0; remote->send_ctx->connected = 0; remote->fd = fd; ev_io_init(&remote->recv_ctx->io, remote_recv_cb, fd, EV_READ); ev_io_init(&remote->send_ctx->io, remote_send_cb, fd, EV_WRITE); ev_timer_init(&remote->send_ctx->watcher, remote_timeout_cb, min(MAX_CONNECT_TIMEOUT, timeout), 0); ev_timer_init(&remote->recv_ctx->watcher, remote_timeout_cb, min(MAX_CONNECT_TIMEOUT, timeout), timeout); remote->recv_ctx->remote = remote; remote->send_ctx->remote = remote; return remote; } static void free_remote(struct remote *remote) { if (remote->server != NULL) { remote->server->remote = NULL; } if (remote->buf != NULL) { free(remote->buf); } free(remote->recv_ctx); free(remote->send_ctx); free(remote); } static void close_and_free_remote(EV_P_ struct remote *remote) { if (remote != NULL) { ev_timer_stop(EV_A_ & remote->send_ctx->watcher); ev_timer_stop(EV_A_ & remote->recv_ctx->watcher); ev_io_stop(EV_A_ & remote->send_ctx->io); ev_io_stop(EV_A_ & remote->recv_ctx->io); close(remote->fd); free_remote(remote); } } static struct server * new_server(int fd, int method) { struct server *server; server = malloc(sizeof(struct server)); memset(server, 0, sizeof(struct server)); server->buf = malloc(BUF_SIZE); server->recv_ctx = malloc(sizeof(struct server_ctx)); server->send_ctx = malloc(sizeof(struct server_ctx)); server->recv_ctx->connected = 0; server->send_ctx->connected = 0; server->fd = fd; ev_io_init(&server->recv_ctx->io, server_recv_cb, fd, EV_READ); ev_io_init(&server->send_ctx->io, server_send_cb, fd, EV_WRITE); server->recv_ctx->server = server; server->send_ctx->server = server; if (method) { server->e_ctx = malloc(sizeof(struct enc_ctx)); server->d_ctx = malloc(sizeof(struct enc_ctx)); enc_ctx_init(method, server->e_ctx, 1); enc_ctx_init(method, server->d_ctx, 0); } else { server->e_ctx = NULL; server->d_ctx = NULL; } cork_dllist_add(&connections, &server->entries); return server; } static void free_server(struct server *server) { cork_dllist_remove(&server->entries); if (server->remote != NULL) { server->remote->server = NULL; } if (server->e_ctx != NULL) { cipher_context_release(&server->e_ctx->evp); free(server->e_ctx); } if (server->d_ctx != NULL) { cipher_context_release(&server->d_ctx->evp); free(server->d_ctx); } if (server->buf != NULL) { free(server->buf); } free(server->recv_ctx); free(server->send_ctx); free(server); } static void close_and_free_server(EV_P_ struct server *server) { if (server != NULL) { ev_io_stop(EV_A_ & server->send_ctx->io); ev_io_stop(EV_A_ & server->recv_ctx->io); close(server->fd); free_server(server); } } static struct remote * create_remote(struct listen_ctx *listener, struct sockaddr *addr) { struct sockaddr *remote_addr; int index = rand() % listener->remote_num; if (addr == NULL) { remote_addr = listener->remote_addr[index]; } else { remote_addr = addr; } int remotefd = socket(remote_addr->sa_family, SOCK_STREAM, IPPROTO_TCP); if (remotefd < 0) { ERROR("socket"); return NULL; } int opt = 1; setsockopt(remotefd, SOL_TCP, TCP_NODELAY, &opt, sizeof(opt)); #ifdef SO_NOSIGPIPE setsockopt(remotefd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt)); #endif // Setup setnonblocking(remotefd); #ifdef SET_INTERFACE if (listener->iface) { setinterface(remotefd, listener->iface); } #endif struct remote *remote = new_remote(remotefd, listener->timeout); remote->addr_len = get_sockaddr_len(remote_addr); memcpy(&(remote->addr), remote_addr, remote->addr_len); return remote; } static void signal_cb(EV_P_ ev_signal *w, int revents) { if (revents & EV_SIGNAL) { switch (w->signum) { case SIGINT: case SIGTERM: ev_unloop(EV_A_ EVUNLOOP_ALL); } } } void accept_cb(EV_P_ ev_io *w, int revents) { struct listen_ctx *listener = (struct listen_ctx *)w; int serverfd = accept(listener->fd, NULL, NULL); if (serverfd == -1) { ERROR("accept"); return; } setnonblocking(serverfd); int opt = 1; setsockopt(serverfd, SOL_TCP, TCP_NODELAY, &opt, sizeof(opt)); #ifdef SO_NOSIGPIPE setsockopt(serverfd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt)); #endif struct server *server = new_server(serverfd, listener->method); server->listener = listener; ev_io_start(EV_A_ & server->recv_ctx->io); } #ifndef LIB_ONLY int main(int argc, char **argv) { int i, c; int pid_flags = 0; char *user = NULL; char *local_port = NULL; char *local_addr = NULL; char *password = NULL; char *timeout = NULL; char *method = NULL; char *pid_path = NULL; char *conf_path = NULL; char *iface = NULL; srand(time(NULL)); int remote_num = 0; ss_addr_t remote_addr[MAX_REMOTE_NUM]; char *remote_port = NULL; int option_index = 0; static struct option long_options[] = { { "fast-open", no_argument, 0, 0 }, { "acl", required_argument, 0, 0 }, { 0, 0, 0, 0 } }; opterr = 0; USE_TTY(); #ifdef ANDROID while ((c = getopt_long(argc, argv, "f:s:p:l:k:t:m:i:c:b:a:uvVA", long_options, &option_index)) != -1) { #else while ((c = getopt_long(argc, argv, "f:s:p:l:k:t:m:i:c:b:a:uvA", long_options, &option_index)) != -1) { #endif switch (c) { case 0: if (option_index == 0) { fast_open = 1; } else if (option_index == 1) { LOGI("initialize acl..."); acl = !init_acl(optarg); } break; case 's': if (remote_num < MAX_REMOTE_NUM) { remote_addr[remote_num].host = optarg; remote_addr[remote_num++].port = NULL; } break; case 'p': remote_port = optarg; break; case 'l': local_port = optarg; break; case 'k': password = optarg; break; case 'f': pid_flags = 1; pid_path = optarg; break; case 't': timeout = optarg; break; case 'm': method = optarg; break; case 'c': conf_path = optarg; break; case 'i': iface = optarg; break; case 'b': local_addr = optarg; break; case 'a': user = optarg; break; case 'u': mode = TCP_AND_UDP; break; case 'v': verbose = 1; break; case 'A': auth = 1; break; #ifdef ANDROID case 'V': vpn = 1; break; #endif } } if (opterr) { usage(); exit(EXIT_FAILURE); } if (argc == 1) { if (conf_path == NULL) { conf_path = DEFAULT_CONF_PATH; } } if (conf_path != NULL) { jconf_t *conf = read_jconf(conf_path); if (remote_num == 0) { remote_num = conf->remote_num; for (i = 0; i < remote_num; i++) { remote_addr[i] = conf->remote_addr[i]; } } if (remote_port == NULL) { remote_port = conf->remote_port; } if (local_addr == NULL) { local_addr = conf->local_addr; } if (local_port == NULL) { local_port = conf->local_port; } if (password == NULL) { password = conf->password; } if (method == NULL) { method = conf->method; } if (timeout == NULL) { timeout = conf->timeout; } if (auth == 0) { auth = conf->auth; } if (fast_open == 0) { fast_open = conf->fast_open; } #ifdef HAVE_SETRLIMIT if (nofile == 0) { nofile = conf->nofile; } /* * no need to check the return value here since we will show * the user an error message if setrlimit(2) fails */ if (nofile) { if (verbose) { LOGI("setting NOFILE to %d", nofile); } set_nofile(nofile); } #endif } if (remote_num == 0 || remote_port == NULL || local_port == NULL || password == NULL) { usage(); exit(EXIT_FAILURE); } if (timeout == NULL) { timeout = "60"; } if (local_addr == NULL) { local_addr = "127.0.0.1"; } if (pid_flags) { USE_SYSLOG(argv[0]); daemonize(pid_path); } if (fast_open == 1) { #ifdef TCP_FASTOPEN LOGI("using tcp fast open"); #else LOGE("tcp fast open is not supported by this environment"); #endif } if (auth) { LOGI("onetime authentication enabled"); } #ifdef __MINGW32__ winsock_init(); #else // ignore SIGPIPE signal(SIGPIPE, SIG_IGN); signal(SIGABRT, SIG_IGN); #endif struct ev_signal sigint_watcher; struct ev_signal sigterm_watcher; ev_signal_init(&sigint_watcher, signal_cb, SIGINT); ev_signal_init(&sigterm_watcher, signal_cb, SIGTERM); ev_signal_start(EV_DEFAULT, &sigint_watcher); ev_signal_start(EV_DEFAULT, &sigterm_watcher); // Setup keys LOGI("initialize ciphers... %s", method); int m = enc_init(password, method); // Setup proxy context struct listen_ctx listen_ctx; listen_ctx.remote_num = remote_num; listen_ctx.remote_addr = malloc(sizeof(struct sockaddr *) * remote_num); for (i = 0; i < remote_num; i++) { char *host = remote_addr[i].host; char *port = remote_addr[i].port == NULL ? remote_port : remote_addr[i].port; struct sockaddr_storage *storage = malloc(sizeof(struct sockaddr_storage)); memset(storage, 0, sizeof(struct sockaddr_storage)); if (get_sockaddr(host, port, storage, 1) == -1) { FATAL("failed to resolve the provided hostname"); } listen_ctx.remote_addr[i] = (struct sockaddr *)storage; } listen_ctx.timeout = atoi(timeout); listen_ctx.iface = iface; listen_ctx.method = m; struct ev_loop *loop = EV_DEFAULT; // Setup socket int listenfd; listenfd = create_and_bind(local_addr, local_port); if (listenfd < 0) { FATAL("bind() error"); } if (listen(listenfd, SOMAXCONN) == -1) { FATAL("listen() error"); } setnonblocking(listenfd); listen_ctx.fd = listenfd; ev_io_init(&listen_ctx.io, accept_cb, listenfd, EV_READ); ev_io_start(loop, &listen_ctx.io); // Setup UDP if (mode != TCP_ONLY) { LOGI("udprelay enabled"); init_udprelay(local_addr, local_port, listen_ctx.remote_addr[0], get_sockaddr_len(listen_ctx.remote_addr[0]), m, auth, listen_ctx.timeout, iface); } LOGI("listening at %s:%s", local_addr, local_port); // setuid if (user != NULL) { run_as(user); } // Init connections cork_dllist_init(&connections); // Enter the loop ev_run(loop, 0); if (verbose) { LOGI("closed gracefully"); } // Clean up ev_io_stop(loop, &listen_ctx.io); free_connections(loop); if (mode != TCP_ONLY) { free_udprelay(); } for (i = 0; i < remote_num; i++) { free(listen_ctx.remote_addr[i]); } free(listen_ctx.remote_addr); #ifdef __MINGW32__ winsock_cleanup(); #endif ev_signal_stop(EV_DEFAULT, &sigint_watcher); ev_signal_stop(EV_DEFAULT, &sigterm_watcher); return 0; } #else int start_ss_local_server(profile_t profile) { srand(time(NULL)); char *remote_host = profile.remote_host; char *local_addr = profile.local_addr; char *method = profile.method; char *password = profile.password; char *log = profile.log; int remote_port = profile.remote_port; int local_port = profile.local_port; int timeout = profile.timeout; mode = profile.mode; fast_open = profile.fast_open; verbose = profile.verbose; char local_port_str[16]; char remote_port_str[16]; sprintf(local_port_str, "%d", local_port); sprintf(remote_port_str, "%d", remote_port); USE_LOGFILE(log); if (profile.acl != NULL) { acl = !init_acl(profile.acl); } if (local_addr == NULL) { local_addr = "127.0.0.1"; } #ifdef __MINGW32__ winsock_init(); #else // ignore SIGPIPE signal(SIGPIPE, SIG_IGN); signal(SIGABRT, SIG_IGN); #endif struct ev_signal sigint_watcher; struct ev_signal sigterm_watcher; ev_signal_init(&sigint_watcher, signal_cb, SIGINT); ev_signal_init(&sigterm_watcher, signal_cb, SIGTERM); ev_signal_start(EV_DEFAULT, &sigint_watcher); ev_signal_start(EV_DEFAULT, &sigterm_watcher); // Setup keys LOGI("initialize ciphers... %s", method); int m = enc_init(password, method); struct sockaddr_storage *storage = malloc(sizeof(struct sockaddr_storage)); memset(storage, 0, sizeof(struct sockaddr_storage)); if (get_sockaddr(remote_host, remote_port_str, storage, 1) == -1) { return -1; } // Setup proxy context struct ev_loop *loop = EV_DEFAULT; struct listen_ctx listen_ctx; listen_ctx.remote_num = 1; listen_ctx.remote_addr = malloc(sizeof(struct sockaddr *)); listen_ctx.remote_addr[0] = (struct sockaddr *)storage; listen_ctx.timeout = timeout; listen_ctx.method = m; listen_ctx.iface = NULL; // Setup socket int listenfd; listenfd = create_and_bind(local_addr, local_port_str); if (listenfd < 0) { ERROR("bind()"); return -1; } if (listen(listenfd, SOMAXCONN) == -1) { ERROR("listen()"); return -1; } setnonblocking(listenfd); listen_ctx.fd = listenfd; ev_io_init(&listen_ctx.io, accept_cb, listenfd, EV_READ); ev_io_start(loop, &listen_ctx.io); // Setup UDP if (mode != TCP_ONLY) { LOGI("udprelay enabled"); struct sockaddr *addr = (struct sockaddr *)storage; init_udprelay(local_addr, local_port_str, addr, get_sockaddr_len(addr), m, auth, timeout, NULL); } LOGI("listening at %s:%s", local_addr, local_port_str); // Init connections cork_dllist_init(&connections); // Enter the loop ev_run(loop, 0); if (verbose) { LOGI("closed gracefully"); } // Clean up if (mode != TCP_ONLY) { free_udprelay(); } ev_io_stop(loop, &listen_ctx.io); free_connections(loop); close(listen_ctx.fd); free(listen_ctx.remote_addr); #ifdef __MINGW32__ winsock_cleanup(); #endif ev_signal_stop(EV_DEFAULT, &sigint_watcher); ev_signal_stop(EV_DEFAULT, &sigterm_watcher); // cannot reach here return 0; } #endif