/* * udprelay.c - Setup UDP relay for both client and server * * Copyright (C) 2013 - 2015, Max Lv * * This file is part of the shadowsocks-libev. * * shadowsocks-libev is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * shadowsocks-libev is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with shadowsocks-libev; see the file COPYING. If not, see * . */ #include #include #include #include #include #include #include #include #include #ifndef __MINGW32__ #include #include #include #include #include #include #endif #ifdef HAVE_CONFIG_H #include "config.h" #endif #if defined(HAVE_SYS_IOCTL_H) && defined(HAVE_NET_IF_H) && defined(__linux__) #include #include #define SET_INTERFACE #endif #ifdef __MINGW32__ #include "win32.h" #endif #include #include #include "utils.h" #include "netutils.h" #include "cache.h" #include "udprelay.h" #ifdef UDPRELAY_REMOTE #define MAX_UDP_CONN_NUM 1024 #else #define MAX_UDP_CONN_NUM 256 #endif #ifdef UDPRELAY_REMOTE #ifdef UDPRELAY_LOCAL #error "UDPRELAY_REMOTE and UDPRELAY_LOCAL should not be both defined" #endif #endif #ifndef EAGAIN #define EAGAIN EWOULDBLOCK #endif #ifndef EWOULDBLOCK #define EWOULDBLOCK EAGAIN #endif #define BUF_SIZE MAX_UDP_PACKET_SIZE static void server_recv_cb(EV_P_ ev_io *w, int revents); static void remote_recv_cb(EV_P_ ev_io *w, int revents); static void remote_timeout_cb(EV_P_ ev_timer *watcher, int revents); static char *hash_key(const int af, const struct sockaddr_storage *addr); #ifdef UDPRELAY_REMOTE static void query_resolve_cb(struct sockaddr *addr, void *data); #endif static void close_and_free_remote(EV_P_ struct remote_ctx *ctx); static struct remote_ctx * new_remote(int fd, struct server_ctx * server_ctx); extern int verbose; static int server_num = 0; static struct server_ctx *server_ctx_list[MAX_REMOTE_NUM] = { NULL }; #ifndef __MINGW32__ static int setnonblocking(int fd) { int flags; if (-1 == (flags = fcntl(fd, F_GETFL, 0))) { flags = 0; } return fcntl(fd, F_SETFL, flags | O_NONBLOCK); } #endif #ifdef SET_INTERFACE static int setinterface(int socket_fd, const char * interface_name) { struct ifreq interface; memset(&interface, 0, sizeof(interface)); strncpy(interface.ifr_name, interface_name, IFNAMSIZ); int res = setsockopt(socket_fd, SOL_SOCKET, SO_BINDTODEVICE, &interface, sizeof(struct ifreq)); return res; } #endif #if defined(UDPRELAY_REMOTE) && defined(SO_BROADCAST) static int set_broadcast(int socket_fd) { int opt = 1; return setsockopt(socket_fd, SOL_SOCKET, SO_BROADCAST, &opt, sizeof(opt)); } #endif #ifdef SO_NOSIGPIPE static int set_nosigpipe(int socket_fd) { int opt = 1; return setsockopt(socket_fd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt)); } #endif #ifdef UDPRELAY_REDIR #ifndef IP_TRANSPARENT #define IP_TRANSPARENT 19 #endif #ifndef IP_RECVORIGDSTADDR #define IP_RECVORIGDSTADDR 20 #endif static int get_dstaddr(struct msghdr *msg, struct sockaddr_storage *dstaddr) { struct cmsghdr *cmsg; for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) { if (cmsg->cmsg_level == SOL_IP && cmsg->cmsg_type == IP_RECVORIGDSTADDR) { memcpy(dstaddr, CMSG_DATA(cmsg), sizeof(struct sockaddr_in)); dstaddr->ss_family = AF_INET; return 0; } else if (cmsg->cmsg_level == SOL_IPV6 && cmsg->cmsg_type == IP_RECVORIGDSTADDR) { memcpy(dstaddr, CMSG_DATA(cmsg), sizeof(struct sockaddr_in6)); dstaddr->ss_family = AF_INET6; return 0; } } return 1; } #endif static char *hash_key(const int af, const struct sockaddr_storage *addr) { int addr_len = sizeof(struct sockaddr_storage); int key_len = addr_len + sizeof(int); char key[key_len]; memset(key, 0, key_len); memcpy(key, &af, sizeof(int)); memcpy(key + sizeof(int), (const uint8_t *)addr, addr_len); return (char *)enc_md5((const uint8_t *)key, key_len, NULL); } static int parse_udprealy_header(const char * buf, const int buf_len, char *host, char *port, struct sockaddr_storage *storage) { const uint8_t atyp = *(uint8_t *)buf; int offset = 1; // get remote addr and port if (atyp == 1) { // IP V4 size_t in_addr_len = sizeof(struct in_addr); if (buf_len > in_addr_len) { if (storage != NULL) { struct sockaddr_in *addr = (struct sockaddr_in *)storage; addr->sin_family = AF_INET; addr->sin_addr = *(struct in_addr *)(buf + offset); addr->sin_port = *(uint16_t *)(buf + offset + in_addr_len); } if (host != NULL) { dns_ntop(AF_INET, (const void *)(buf + offset), host, INET_ADDRSTRLEN); } offset += in_addr_len; } } else if (atyp == 3) { // Domain name uint8_t name_len = *(uint8_t *)(buf + offset); if (name_len < buf_len && name_len < 255 && name_len > 0) { if (host != NULL) { memcpy(host, buf + offset + 1, name_len); } offset += name_len + 1; } if (storage != NULL) { struct cork_ip ip; if (cork_ip_init(&ip, host) != -1) { if (ip.version == 4) { struct sockaddr_in *addr = (struct sockaddr_in *)storage; dns_pton(AF_INET, host, &(addr->sin_addr)); addr->sin_port = *(uint16_t *)(buf + offset); addr->sin_family = AF_INET; } else if (ip.version == 6) { struct sockaddr_in6 *addr = (struct sockaddr_in6 *)storage; dns_pton(AF_INET, host, &(addr->sin6_addr)); addr->sin6_port = *(uint16_t *)(buf + offset); addr->sin6_family = AF_INET6; } } } } else if (atyp == 4) { // IP V6 size_t in6_addr_len = sizeof(struct in6_addr); if (buf_len > in6_addr_len) { if (storage != NULL) { struct sockaddr_in6 *addr = (struct sockaddr_in6 *)storage; addr->sin6_family = AF_INET6; addr->sin6_addr = *(struct in6_addr *)(buf + offset); addr->sin6_port = *(uint16_t *)(buf + offset + in6_addr_len); } if (host != NULL) { dns_ntop(AF_INET6, (const void *)(buf + offset), host, INET6_ADDRSTRLEN); } offset += in6_addr_len; } } if (offset == 1) { LOGE("[udp] invalid header with addr type %d", atyp); return 0; } if (port != NULL) { sprintf(port, "%d", ntohs(*(uint16_t *)(buf + offset))); } offset += 2; return offset; } static char *get_addr_str(const struct sockaddr *sa) { static char s[SS_ADDRSTRLEN]; memset(s, 0, SS_ADDRSTRLEN); char addr[INET6_ADDRSTRLEN] = { 0 }; char port[PORTSTRLEN] = { 0 }; uint16_t p; switch (sa->sa_family) { case AF_INET: dns_ntop(AF_INET, &(((struct sockaddr_in *)sa)->sin_addr), addr, INET_ADDRSTRLEN); p = ntohs(((struct sockaddr_in *)sa)->sin_port); sprintf(port, "%d", p); break; case AF_INET6: dns_ntop(AF_INET6, &(((struct sockaddr_in6 *)sa)->sin6_addr), addr, INET6_ADDRSTRLEN); p = ntohs(((struct sockaddr_in *)sa)->sin_port); sprintf(port, "%d", p); break; default: strncpy(s, "Unknown AF", SS_ADDRSTRLEN); } int addr_len = strlen(addr); int port_len = strlen(port); memcpy(s, addr, addr_len); memcpy(s + addr_len + 1, port, port_len); s[addr_len] = ':'; return s; } int create_remote_socket(int ipv6) { int remote_sock; if (ipv6) { // Try to bind IPv6 first struct sockaddr_in6 addr; memset(&addr, 0, sizeof(addr)); addr.sin6_family = AF_INET6; addr.sin6_addr = in6addr_any; addr.sin6_port = 0; remote_sock = socket(AF_INET6, SOCK_DGRAM, 0); if (remote_sock == -1) { ERROR("[udp] cannot create socket"); return -1; } if (bind(remote_sock, (struct sockaddr *)&addr, sizeof(addr)) != 0) { FATAL("[udp] cannot bind remote"); return -1; } } else { // Or else bind to IPv4 struct sockaddr_in addr; memset(&addr, 0, sizeof(addr)); addr.sin_family = AF_INET; addr.sin_addr.s_addr = INADDR_ANY; addr.sin_port = 0; remote_sock = socket(AF_INET, SOCK_DGRAM, 0); if (remote_sock == -1) { ERROR("[udp] cannot create socket"); return -1; } if (bind(remote_sock, (struct sockaddr *)&addr, sizeof(addr)) != 0) { FATAL("[udp] cannot bind remote"); return -1; } } return remote_sock; } int create_server_socket(const char *host, const char *port) { struct addrinfo hints; struct addrinfo *result, *rp, *ipv4v6bindall; int s, server_sock; memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_UNSPEC; /* Return IPv4 and IPv6 choices */ hints.ai_socktype = SOCK_DGRAM; /* We want a UDP socket */ hints.ai_flags = AI_PASSIVE | AI_ADDRCONFIG; /* For wildcard IP address */ hints.ai_protocol = IPPROTO_UDP; s = getaddrinfo(host, port, &hints, &result); if (s != 0) { LOGE("[udp] getaddrinfo: %s", gai_strerror(s)); return -1; } rp = result; /* On Linux, with net.ipv6.bindv6only = 0 (the default), getaddrinfo(NULL) with AI_PASSIVE returns 0.0.0.0 and :: (in this order). AI_PASSIVE was meant to return a list of addresses to listen on, but it is impossible to listen on 0.0.0.0 and :: at the same time, if :: implies dualstack mode. */ if (!host) { ipv4v6bindall = result; /* Loop over all address infos found until a IPV6 address is found. */ while (ipv4v6bindall) { if (ipv4v6bindall->ai_family == AF_INET6) { rp = ipv4v6bindall; /* Take first IPV6 address available */ break; } ipv4v6bindall = ipv4v6bindall->ai_next; /* Get next address info, if any */ } } for (/*rp = result*/; rp != NULL; rp = rp->ai_next) { server_sock = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); if (server_sock == -1) { continue; } if (rp->ai_family == AF_INET6) { int ipv6only = host ? 1 : 0; setsockopt(server_sock, IPPROTO_IPV6, IPV6_V6ONLY, &ipv6only, sizeof(ipv6only)); } int opt = 1; setsockopt(server_sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)); #ifdef SO_NOSIGPIPE set_nosigpipe(server_sock); #endif #ifdef UDPRELAY_REDIR if (setsockopt(server_sock, SOL_IP, IP_TRANSPARENT, &opt, sizeof(opt))) { FATAL("[udp] setsockopt IP_TRANSPARENT"); } if (setsockopt(server_sock, IPPROTO_IP, IP_RECVORIGDSTADDR, &opt, sizeof(opt))) { FATAL("[udp] setsockopt IP_RECVORIGDSTADDR"); } #endif s = bind(server_sock, rp->ai_addr, rp->ai_addrlen); if (s == 0) { /* We managed to bind successfully! */ break; } else { ERROR("[udp] bind"); } close(server_sock); } if (rp == NULL) { LOGE("[udp] cannot bind"); return -1; } freeaddrinfo(result); return server_sock; } struct remote_ctx *new_remote(int fd, struct server_ctx *server_ctx) { struct remote_ctx *ctx = malloc(sizeof(struct remote_ctx)); memset(ctx, 0, sizeof(struct remote_ctx)); ctx->fd = fd; ctx->server_ctx = server_ctx; ev_io_init(&ctx->io, remote_recv_cb, fd, EV_READ); ev_timer_init(&ctx->watcher, remote_timeout_cb, server_ctx->timeout, server_ctx->timeout); return ctx; } struct server_ctx * new_server_ctx(int fd) { struct server_ctx *ctx = malloc(sizeof(struct server_ctx)); memset(ctx, 0, sizeof(struct server_ctx)); ctx->fd = fd; ev_io_init(&ctx->io, server_recv_cb, fd, EV_READ); return ctx; } #ifdef UDPRELAY_REMOTE struct query_ctx *new_query_ctx(const char *buf, const int buf_len) { struct query_ctx *ctx = malloc(sizeof(struct query_ctx)); memset(ctx, 0, sizeof(struct query_ctx)); ctx->buf = malloc(buf_len); ctx->buf_len = buf_len; memcpy(ctx->buf, buf, buf_len); return ctx; } void close_and_free_query(EV_P_ struct query_ctx *ctx) { if (ctx != NULL) { if (ctx->query != NULL) { resolv_cancel(ctx->query); ctx->query = NULL; } if (ctx->buf != NULL) { free(ctx->buf); } free(ctx); } } #endif void close_and_free_remote(EV_P_ struct remote_ctx *ctx) { if (ctx != NULL) { ev_timer_stop(EV_A_ & ctx->watcher); ev_io_stop(EV_A_ & ctx->io); if (ctx->src_fd != 0) { close(ctx->src_fd); } close(ctx->fd); free(ctx); } } static void remote_timeout_cb(EV_P_ ev_timer *watcher, int revents) { struct remote_ctx *remote_ctx = (struct remote_ctx *)(((void *)watcher) - sizeof(ev_io)); if (verbose) { LOGI("[udp] connection timeout"); } char *key = hash_key(remote_ctx->af, &remote_ctx->src_addr); cache_remove(remote_ctx->server_ctx->conn_cache, key); } #ifdef UDPRELAY_REMOTE static void query_resolve_cb(struct sockaddr *addr, void *data) { struct query_ctx *query_ctx = (struct query_ctx *)data; struct ev_loop *loop = query_ctx->server_ctx->loop; if (verbose) { LOGI("[udp] udns resolved"); } query_ctx->query = NULL; if (addr == NULL) { LOGE("[udp] udns returned an error"); } else { struct remote_ctx *remote_ctx = query_ctx->remote_ctx; int cache_hit = 0; if (remote_ctx == NULL) { int remotefd = create_remote_socket(addr->sa_family == AF_INET6); if (remotefd != -1) { setnonblocking(remotefd); #ifdef SO_BROADCAST set_broadcast(remotefd); #endif #ifdef SO_NOSIGPIPE set_nosigpipe(remotefd); #endif #ifdef SET_INTERFACE if (query_ctx->server_ctx->iface) { setinterface(remotefd, query_ctx->server_ctx->iface); } #endif remote_ctx = new_remote(remotefd, query_ctx->server_ctx); remote_ctx->src_addr = query_ctx->src_addr; if (addr->sa_family == AF_INET) { memcpy(&(remote_ctx->dst_addr), addr, sizeof(struct sockaddr_in)); } else if (addr->sa_family == AF_INET6) { memcpy(&(remote_ctx->dst_addr), addr, sizeof(struct sockaddr_in6)); } remote_ctx->server_ctx = query_ctx->server_ctx; remote_ctx->addr_header_len = query_ctx->addr_header_len; memcpy(remote_ctx->addr_header, query_ctx->addr_header, query_ctx->addr_header_len); } else { ERROR("[udp] bind() error"); } } else { if (addr->sa_family == AF_INET) { memcpy(&(remote_ctx->dst_addr), addr, sizeof(struct sockaddr_in)); } else if (addr->sa_family == AF_INET6) { memcpy(&(remote_ctx->dst_addr), addr, sizeof(struct sockaddr_in6)); } cache_hit = 1; } if (remote_ctx != NULL) { size_t addr_len = get_sockaddr_len((struct sockaddr *)&remote_ctx->dst_addr); int s = sendto(remote_ctx->fd, query_ctx->buf, query_ctx->buf_len, 0, (struct sockaddr *)&remote_ctx->dst_addr, addr_len); if (s == -1) { ERROR("[udp] sendto_remote"); if (!cache_hit) { close_and_free_remote(EV_A_ remote_ctx); } } else { // Add to conn cache if (!cache_hit) { char *key = hash_key(0, &remote_ctx->src_addr); cache_insert(query_ctx->server_ctx->conn_cache, key, (void *)remote_ctx); ev_io_start(EV_A_ & remote_ctx->io); ev_timer_start(EV_A_ & remote_ctx->watcher); } } } } // clean up close_and_free_query(EV_A_ query_ctx); } #endif static void remote_recv_cb(EV_P_ ev_io *w, int revents) { struct remote_ctx *remote_ctx = (struct remote_ctx *)w; struct server_ctx *server_ctx = remote_ctx->server_ctx; // server has been closed if (server_ctx == NULL) { LOGE("[udp] invalid server"); close_and_free_remote(EV_A_ remote_ctx); return; } if (verbose) { LOGI("[udp] remote receive a packet"); } struct sockaddr src_addr; socklen_t src_addr_len = sizeof(src_addr); char *buf = malloc(BUF_SIZE); // recv ssize_t buf_len = recvfrom(remote_ctx->fd, buf, BUF_SIZE, 0, &src_addr, &src_addr_len); if (buf_len == -1) { // error on recv // simply drop that packet if (verbose) { ERROR("[udp] server_recvfrom"); } goto CLEAN_UP; } #ifdef UDPRELAY_LOCAL buf = ss_decrypt_all(BUF_SIZE, buf, &buf_len, server_ctx->method); if (buf == NULL) { if (verbose) { ERROR("[udp] server_ss_decrypt_all"); } goto CLEAN_UP; } int len = parse_udprealy_header(buf, buf_len, NULL, NULL, NULL); if (len == 0) { LOGI("[udp] error in parse header"); // error in parse header goto CLEAN_UP; } // server may return using a different address type other than the type we // have used during sending #if defined(UDPRELAY_TUNNEL) || defined(UDPRELAY_REDIR) // Construct packet buf_len -= len; memmove(buf, buf + len, buf_len); #else // Construct packet buf = realloc(buf, buf_len + 3); memmove(buf + 3, buf, buf_len); memset(buf, 0, 3); buf_len += 3; #endif #endif #ifdef UDPRELAY_REMOTE unsigned int addr_header_len = remote_ctx->addr_header_len; // Construct packet buf = realloc(buf, buf_len + addr_header_len); memmove(buf + addr_header_len, buf, buf_len); memcpy(buf, remote_ctx->addr_header, addr_header_len); buf_len += addr_header_len; buf = ss_encrypt_all(BUF_SIZE, buf, &buf_len, server_ctx->method); #endif size_t remote_src_addr_len = get_sockaddr_len((struct sockaddr *)&remote_ctx->src_addr); #ifdef UDPRELAY_REDIR size_t remote_dst_addr_len = get_sockaddr_len((struct sockaddr *)&remote_ctx->dst_addr); if (remote_ctx->src_fd == 0) { int src_sock = socket(remote_ctx->src_addr.ss_family, SOCK_DGRAM, 0); if (src_sock < 0) { ERROR("[udp] remote_recv_socket"); } int opt = 1; if (setsockopt(src_sock, SOL_IP, IP_TRANSPARENT, &opt, sizeof(opt))) { ERROR("[udp] remote_recv_setsockopt"); close(src_sock); goto CLEAN_UP; } if (setsockopt(src_sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt))) { ERROR("[udp] remote_recv_setsockopt"); close(src_sock); goto CLEAN_UP; } if (bind(src_sock, (struct sockaddr *)&remote_ctx->dst_addr, remote_dst_addr_len) != 0) { ERROR("[udp] remote_recv_bind"); close(src_sock); goto CLEAN_UP; } remote_ctx->src_fd = src_sock; } int s = sendto(remote_ctx->src_fd, buf, buf_len, 0, (struct sockaddr *)&remote_ctx->src_addr, remote_src_addr_len); if (s == -1) { ERROR("[udp] remote_recv_sendto"); goto CLEAN_UP; } #else int s = sendto(server_ctx->fd, buf, buf_len, 0, (struct sockaddr *)&remote_ctx->src_addr, remote_src_addr_len); if (s == -1) { ERROR("[udp] remote_recv_sendto"); goto CLEAN_UP; } #endif // handle the UDP packet sucessfully, // triger the timer ev_timer_again(EV_A_ & remote_ctx->watcher); CLEAN_UP: free(buf); } static void server_recv_cb(EV_P_ ev_io *w, int revents) { struct server_ctx *server_ctx = (struct server_ctx *)w; struct sockaddr_storage src_addr; memset(&src_addr, 0, sizeof(struct sockaddr_storage)); char *buf = malloc(BUF_SIZE); socklen_t src_addr_len = sizeof(struct sockaddr_storage); unsigned int offset = 0; #ifdef UDPRELAY_REDIR char control_buffer[64] = { 0 }; struct msghdr msg; struct iovec iov[1]; struct sockaddr_storage dst_addr; memset(&dst_addr, 0, sizeof(struct sockaddr_storage)); msg.msg_name = &src_addr; msg.msg_namelen = src_addr_len; msg.msg_control = control_buffer; msg.msg_controllen = sizeof(control_buffer); iov[0].iov_base = buf; iov[0].iov_len = BUF_SIZE; msg.msg_iov = iov; msg.msg_iovlen = 1; ssize_t buf_len = recvmsg(server_ctx->fd, &msg, 0); if (buf_len == -1) { ERROR("[udp] server_recvmsg"); goto CLEAN_UP; } if (get_dstaddr(&msg, &dst_addr)) { LOGE("[udp] unable to get dest addr"); goto CLEAN_UP; } #else ssize_t buf_len = recvfrom(server_ctx->fd, buf, BUF_SIZE, 0, (struct sockaddr *)&src_addr, &src_addr_len); if (buf_len == -1) { // error on recv // simply drop that packet if (verbose) { ERROR("[udp] server_recvfrom"); } goto CLEAN_UP; } #endif if (verbose) { LOGI("[udp] server receive a packet"); } #ifdef UDPRELAY_REMOTE buf = ss_decrypt_all(BUF_SIZE, buf, &buf_len, server_ctx->method); if (buf == NULL) { if (verbose) { ERROR("[udp] server_ss_decrypt_all"); } goto CLEAN_UP; } #endif #ifdef UDPRELAY_LOCAL #if !defined(UDPRELAY_TUNNEL) && !defined(UDPRELAY_REDIR) uint8_t frag = *(uint8_t *)(buf + 2); offset += 3; #endif #endif /* * * SOCKS5 UDP Request * +----+------+------+----------+----------+----------+ * |RSV | FRAG | ATYP | DST.ADDR | DST.PORT | DATA | * +----+------+------+----------+----------+----------+ * | 2 | 1 | 1 | Variable | 2 | Variable | * +----+------+------+----------+----------+----------+ * * SOCKS5 UDP Response * +----+------+------+----------+----------+----------+ * |RSV | FRAG | ATYP | DST.ADDR | DST.PORT | DATA | * +----+------+------+----------+----------+----------+ * | 2 | 1 | 1 | Variable | 2 | Variable | * +----+------+------+----------+----------+----------+ * * shadowsocks UDP Request (before encrypted) * +------+----------+----------+----------+ * | ATYP | DST.ADDR | DST.PORT | DATA | * +------+----------+----------+----------+ * | 1 | Variable | 2 | Variable | * +------+----------+----------+----------+ * * shadowsocks UDP Response (before encrypted) * +------+----------+----------+----------+ * | ATYP | DST.ADDR | DST.PORT | DATA | * +------+----------+----------+----------+ * | 1 | Variable | 2 | Variable | * +------+----------+----------+----------+ * * shadowsocks UDP Request and Response (after encrypted) * +-------+--------------+ * | IV | PAYLOAD | * +-------+--------------+ * | Fixed | Variable | * +-------+--------------+ * */ #ifdef UDPRELAY_REDIR char addr_header[256] = { 0 }; int addr_header_len = 0; if (dst_addr.ss_family == AF_INET) { struct sockaddr_in *addr = (struct sockaddr_in *)&dst_addr; size_t addr_len = sizeof(struct in_addr); addr_header[addr_header_len++] = 1; memcpy(addr_header + addr_header_len, &addr->sin_addr, addr_len); addr_header_len += addr_len; memcpy(addr_header + addr_header_len, &addr->sin_port, 2); addr_header_len += 2; } else if (dst_addr.ss_family == AF_INET6) { struct sockaddr_in6 *addr = (struct sockaddr_in6 *)&dst_addr; size_t addr_len = sizeof(struct in6_addr); addr_header[addr_header_len++] = 4; memcpy(addr_header + addr_header_len, &addr->sin6_addr, addr_len); addr_header_len += addr_len; memcpy(addr_header + addr_header_len, &addr->sin6_port, 2); addr_header_len += 2; } else { LOGE("[udp] failed to parse tproxy addr"); goto CLEAN_UP; } // reconstruct the buffer buf = realloc(buf, buf_len + addr_header_len); memmove(buf + addr_header_len, buf, buf_len); memcpy(buf, addr_header, addr_header_len); buf_len += addr_header_len; char *key = hash_key(dst_addr.ss_family, &src_addr); #elif UDPRELAY_TUNNEL char addr_header[256] = { 0 }; char *host = server_ctx->tunnel_addr.host; char *port = server_ctx->tunnel_addr.port; uint16_t port_num = (uint16_t)atoi(port); uint16_t port_net_num = htons(port_num); int addr_header_len = 0; struct cork_ip ip; if (cork_ip_init(&ip, host) != -1) { if (ip.version == 4) { // send as IPv4 struct in_addr host_addr; int host_len = sizeof(struct in_addr); if (dns_pton(AF_INET, host, &host_addr) == -1) { FATAL("IP parser error"); } addr_header[addr_header_len++] = 1; memcpy(addr_header + addr_header_len, &host_addr, host_len); addr_header_len += host_len; } else if (ip.version == 6) { // send as IPv6 struct in6_addr host_addr; int host_len = sizeof(struct in6_addr); if (dns_pton(AF_INET6, host, &host_addr) == -1) { FATAL("IP parser error"); } addr_header[addr_header_len++] = 4; memcpy(addr_header + addr_header_len, &host_addr, host_len); addr_header_len += host_len; } else { FATAL("IP parser error"); } } else { // send as domain int host_len = strlen(host); addr_header[addr_header_len++] = 3; addr_header[addr_header_len++] = host_len; memcpy(addr_header + addr_header_len, host, host_len); addr_header_len += host_len; } memcpy(addr_header + addr_header_len, &port_net_num, 2); addr_header_len += 2; // reconstruct the buffer buf = realloc(buf, buf_len + addr_header_len); memmove(buf + addr_header_len, buf, buf_len); memcpy(buf, addr_header, addr_header_len); buf_len += addr_header_len; char *key = hash_key(ip.version == 4 ? AF_INET : AF_INET6, &src_addr); #else char host[256] = { 0 }; char port[64] = { 0 }; struct sockaddr_storage storage; memset(&storage, 0, sizeof(struct sockaddr_storage)); int addr_header_len = parse_udprealy_header(buf + offset, buf_len - offset, host, port, &storage); if (addr_header_len == 0) { // error in parse header goto CLEAN_UP; } char *addr_header = buf + offset; char *key = hash_key(storage.ss_family, &src_addr); #endif struct cache *conn_cache = server_ctx->conn_cache; struct remote_ctx *remote_ctx = NULL; cache_lookup(conn_cache, key, (void *)&remote_ctx); if (remote_ctx != NULL) { if (memcmp(&src_addr, &remote_ctx->src_addr, sizeof(src_addr))) { remote_ctx = NULL; } } if (remote_ctx == NULL) { if (verbose) { #ifdef UDPRELAY_REDIR char src[SS_ADDRSTRLEN]; char dst[SS_ADDRSTRLEN]; strcpy(src, get_addr_str((struct sockaddr *)&src_addr)); strcpy(dst, get_addr_str((struct sockaddr *)&dst_addr)); LOGI("[udp] cache miss: %s <-> %s", dst, src); #else LOGI("[udp] cache miss: %s:%s <-> %s", host, port, get_addr_str((struct sockaddr *)&src_addr)); #endif } } else { if (verbose) { #ifdef UDPRELAY_REDIR char src[SS_ADDRSTRLEN]; char dst[SS_ADDRSTRLEN]; strcpy(src, get_addr_str((struct sockaddr *)&src_addr)); strcpy(dst, get_addr_str((struct sockaddr *)&dst_addr)); LOGI("[udp] cache hit: %s <-> %s", dst, src); #else LOGI("[udp] cache hit: %s:%s <-> %s", host, port, get_addr_str((struct sockaddr *)&src_addr)); #endif } } #ifdef UDPRELAY_LOCAL #if !defined(UDPRELAY_TUNNEL) && !defined(UDPRELAY_REDIR) if (frag) { LOGE("[udp] drop a message since frag is not 0, but %d", frag); goto CLEAN_UP; } #endif const struct sockaddr *remote_addr = server_ctx->remote_addr; const int remote_addr_len = server_ctx->remote_addr_len; if (remote_ctx == NULL) { // Bind to any port int remotefd = create_remote_socket(remote_addr->sa_family == AF_INET6); if (remotefd < 0) { ERROR("[udp] udprelay bind() error"); goto CLEAN_UP; } setnonblocking(remotefd); #ifdef SO_NOSIGPIPE set_nosigpipe(remotefd); #endif #ifdef SET_INTERFACE if (server_ctx->iface) { setinterface(remotefd, server_ctx->iface); } #endif // Init remote_ctx remote_ctx = new_remote(remotefd, server_ctx); remote_ctx->src_addr = src_addr; #ifdef UDPRELAY_REDIR memcpy(&(remote_ctx->dst_addr), &dst_addr, get_sockaddr_len((struct sockaddr *)&dst_addr)); #endif remote_ctx->af = remote_addr->sa_family; remote_ctx->addr_header_len = addr_header_len; memcpy(remote_ctx->addr_header, addr_header, addr_header_len); // Add to conn cache cache_insert(conn_cache, key, (void *)remote_ctx); // Start remote io ev_io_start(EV_A_ & remote_ctx->io); ev_timer_start(EV_A_ & remote_ctx->watcher); } if (offset > 0) { buf_len -= offset; memmove(buf, buf + offset, buf_len); } buf = ss_encrypt_all(BUF_SIZE, buf, &buf_len, server_ctx->method); int s = sendto(remote_ctx->fd, buf, buf_len, 0, remote_addr, remote_addr_len); if (s == -1) { ERROR("[udp] sendto_remote"); } #else int cache_hit = 0; int need_query = 0; if (remote_ctx != NULL) { cache_hit = 1; // detect destination mismatch if (remote_ctx->addr_header_len != addr_header_len || memcmp(addr_header, remote_ctx->addr_header, addr_header_len) != 0) { if (storage.ss_family == AF_INET || storage.ss_family == AF_INET6) { remote_ctx->dst_addr = storage; } else { need_query = 1; } } } else { if (storage.ss_family == AF_INET || storage.ss_family == AF_INET6) { int remotefd = create_remote_socket(storage.ss_family == AF_INET6); if (remotefd != -1) { setnonblocking(remotefd); #ifdef SO_BROADCAST set_broadcast(remotefd); #endif #ifdef SO_NOSIGPIPE set_nosigpipe(remotefd); #endif #ifdef SET_INTERFACE if (server_ctx->iface) { setinterface(remotefd, server_ctx->iface); } #endif remote_ctx = new_remote(remotefd, server_ctx); remote_ctx->src_addr = src_addr; remote_ctx->dst_addr = storage; remote_ctx->server_ctx = server_ctx; remote_ctx->addr_header_len = addr_header_len; memcpy(remote_ctx->addr_header, addr_header, addr_header_len); } else { ERROR("[udp] bind() error"); goto CLEAN_UP; } } } if (remote_ctx != NULL && !need_query) { size_t addr_len = get_sockaddr_len((struct sockaddr *)&remote_ctx->dst_addr); int s = sendto(remote_ctx->fd, buf + addr_header_len, buf_len - addr_header_len, 0, (struct sockaddr *)&remote_ctx->dst_addr, addr_len); if (s == -1) { ERROR("[udp] sendto_remote"); if (!cache_hit) { close_and_free_remote(EV_A_ remote_ctx); } } else { if (!cache_hit) { // Add to conn cache remote_ctx->af = remote_ctx->dst_addr.ss_family; char *key = hash_key(remote_ctx->af, &remote_ctx->src_addr); cache_insert(server_ctx->conn_cache, key, (void *)remote_ctx); ev_io_start(EV_A_ & remote_ctx->io); ev_timer_start(EV_A_ & remote_ctx->watcher); } } } else { struct addrinfo hints; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_DGRAM; hints.ai_protocol = IPPROTO_UDP; struct query_ctx *query_ctx = new_query_ctx(buf + addr_header_len, buf_len - addr_header_len); query_ctx->server_ctx = server_ctx; query_ctx->addr_header_len = addr_header_len; query_ctx->src_addr = src_addr; memcpy(query_ctx->addr_header, addr_header, addr_header_len); if (need_query) { query_ctx->remote_ctx = remote_ctx; } struct ResolvQuery *query = resolv_query(host, query_resolve_cb, NULL, query_ctx, htons(atoi(port))); if (query == NULL) { ERROR("[udp] unable to create DNS query"); close_and_free_query(EV_A_ query_ctx); goto CLEAN_UP; } query_ctx->query = query; } #endif CLEAN_UP: free(buf); } void free_cb(void *element) { struct remote_ctx *remote_ctx = (struct remote_ctx *)element; if (verbose) { LOGI("[udp] one connection freed"); } close_and_free_remote(EV_DEFAULT, remote_ctx); } int init_udprelay(const char *server_host, const char *server_port, #ifdef UDPRELAY_LOCAL const struct sockaddr *remote_addr, const int remote_addr_len, #ifdef UDPRELAY_TUNNEL const ss_addr_t tunnel_addr, #endif #endif int method, int timeout, const char *iface) { // Inilitialize ev loop struct ev_loop *loop = EV_DEFAULT; // Inilitialize cache struct cache *conn_cache; cache_create(&conn_cache, MAX_UDP_CONN_NUM, free_cb); ////////////////////////////////////////////////// // Setup server context // Bind to port int serverfd = create_server_socket(server_host, server_port); if (serverfd < 0) { FATAL("[udp] bind() error"); } setnonblocking(serverfd); struct server_ctx *server_ctx = new_server_ctx(serverfd); #ifdef UDPRELAY_REMOTE server_ctx->loop = loop; #endif server_ctx->timeout = min(timeout, MAX_UDP_TIMEOUT); server_ctx->method = method; server_ctx->iface = iface; server_ctx->conn_cache = conn_cache; #ifdef UDPRELAY_LOCAL server_ctx->remote_addr = remote_addr; server_ctx->remote_addr_len = remote_addr_len; #ifdef UDPRELAY_TUNNEL server_ctx->tunnel_addr = tunnel_addr; #endif #endif ev_io_start(loop, &server_ctx->io); server_ctx_list[server_num++] = server_ctx; return 0; } void free_udprelay() { struct ev_loop *loop = EV_DEFAULT; while (server_num-- > 0) { struct server_ctx *server_ctx = server_ctx_list[server_num]; ev_io_stop(loop, &server_ctx->io); close(server_ctx->fd); cache_delete(server_ctx->conn_cache, 0); free(server_ctx); server_ctx_list[server_num] = NULL; } }