#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "utils.h" #include "local.h" #include "socks5.h" #ifdef HAVE_CONFIG_H #include "config.h" #endif #ifndef EAGAIN #define EAGAIN EWOULDBLOCK #endif #ifndef EWOULDBLOCK #define EWOULDBLOCK EAGAIN #endif #define min(a,b) (((a)<(b))?(a):(b)) int setnonblocking(int fd) { int flags; if (-1 ==(flags = fcntl(fd, F_GETFL, 0))) flags = 0; return fcntl(fd, F_SETFL, flags | O_NONBLOCK); } int create_and_bind(const char *port) { struct addrinfo hints; struct addrinfo *result, *rp; int s, listen_sock; memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_UNSPEC; /* Return IPv4 and IPv6 choices */ hints.ai_socktype = SOCK_STREAM; /* We want a TCP socket */ s = getaddrinfo("0.0.0.0", port, &hints, &result); if (s != 0) { LOGD("getaddrinfo: %s\n", gai_strerror(s)); return -1; } for (rp = result; rp != NULL; rp = rp->ai_next) { listen_sock = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); if (listen_sock == -1) continue; int opt = 1; int err = setsockopt(listen_sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)); if (err) { perror("setsocket"); } s = bind(listen_sock, rp->ai_addr, rp->ai_addrlen); if (s == 0) { /* We managed to bind successfully! */ break; } else { perror("bind"); } close(listen_sock); } if (rp == NULL) { LOGE("Could not bind\n"); return -1; } freeaddrinfo(result); return listen_sock; } static void server_recv_cb (EV_P_ ev_io *w, int revents) { struct server_ctx *server_recv_ctx = (struct server_ctx *)w; struct server *server = server_recv_ctx->server; struct remote *remote = server->remote; if (remote == NULL) { close_and_free_server(EV_A_ server); return; } while (1) { char *buf = remote->buf; int *buf_len = &remote->buf_len; if (server->stage != 5) { buf = server->buf; buf_len = &server->buf_len; } ssize_t r = recv(server->fd, buf, BUF_SIZE, 0); if (r == 0) { // connection closed *buf_len = 0; close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else if(r < 0) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data // continue to wait for recv break; } else { perror("server recv"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } // local socks5 server if (server->stage == 5) { encrypt_ctx(remote->buf, r, server->e_ctx); int w = send(remote->fd, remote->buf, r, 0); if(w == -1) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data, wait for send remote->buf_len = r; ev_io_stop(EV_A_ &server_recv_ctx->io); ev_io_start(EV_A_ &remote->send_ctx->io); break; } else { perror("send"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } else if(w < r) { char *pt = remote->buf; char *et = pt + r; while (pt + w < et) { *pt = *(pt + w); pt++; } remote->buf_len = r - w; assert(remote->buf_len >= 0); ev_io_stop(EV_A_ &server_recv_ctx->io); ev_io_start(EV_A_ &remote->send_ctx->io); break; } } else if (server->stage == 0) { struct method_select_response response; response.ver = SVERSION; response.method = 0; char *send_buf = (char *)&response; send(server->fd, send_buf, sizeof(response), 0); server->stage = 1; return; } else if (server->stage == 1) { struct socks5_request *request = (struct socks5_request *)server->buf; if (request->cmd != 1) { LOGE("unsupported cmd: %d\n", request->cmd); struct socks5_response response; response.ver = SVERSION; response.rep = CMD_NOT_SUPPORTED; response.rsv = 0; response.atyp = 1; char *send_buf = (char *)&response; send(server->fd, send_buf, 4, 0); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } char addr_to_send[256]; unsigned char addr_len = 0; addr_to_send[addr_len++] = request->atyp; // get remote addr and port if (request->atyp == 1) { // IP V4 size_t in_addr_len = sizeof(struct in_addr); memcpy(addr_to_send + addr_len, server->buf + 4, in_addr_len + 2); addr_len += in_addr_len + 2; } else if (request->atyp == 3) { // Domain name unsigned char name_len = *(unsigned char *)(server->buf + 4); addr_to_send[addr_len++] = name_len; memcpy(addr_to_send + addr_len, server->buf + 4 + 1, name_len); addr_len += name_len; // get port addr_to_send[addr_len++] = *(unsigned char *)(server->buf + 4 + 1 + name_len); addr_to_send[addr_len++] = *(unsigned char *)(server->buf + 4 + 1 + name_len + 1); } else { LOGE("unsupported addrtype: %d\n", request->atyp); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } encrypt_ctx(addr_to_send, addr_len, server->e_ctx); send(remote->fd, addr_to_send, addr_len, 0); // Fake reply struct socks5_response response; response.ver = SVERSION; response.rep = 0; response.rsv = 0; response.atyp = 1; struct in_addr sin_addr; inet_aton("0.0.0.0", &sin_addr); memcpy(server->buf, &response, 4); memset(server->buf + 4, 0, sizeof(struct in_addr) + sizeof(unsigned short)); int reply_size = 4 + sizeof(struct in_addr) + sizeof(unsigned short); int r = send(server->fd, server->buf, reply_size, 0); if (r < reply_size) { LOGE("header not complete sent\n"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } server->stage = 5; } } } static void server_send_cb (EV_P_ ev_io *w, int revents) { struct server_ctx *server_send_ctx = (struct server_ctx *)w; struct server *server = server_send_ctx->server; struct remote *remote = server->remote; if (server->buf_len == 0) { // close and free close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else { // has data to send ssize_t r = send(server->fd, server->buf, server->buf_len, 0); if (r < 0) { if (errno == EAGAIN || errno == EWOULDBLOCK) { perror("send"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } return; } if (r < server->buf_len) { // partly sent, move memory, wait for the next time to send char *pt = server->buf; char *et = pt + server->buf_len; while (pt + r < et) { *pt = *(pt + r); pt++; } server->buf_len -= r; assert(server->buf_len >= 0); return; } else { // all sent out, wait for reading ev_io_stop(EV_A_ &server_send_ctx->io); if (remote != NULL) { ev_io_start(EV_A_ &remote->recv_ctx->io); } else { close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } } } static void remote_timeout_cb(EV_P_ ev_timer *watcher, int revents) { struct remote_ctx *remote_ctx = (struct remote_ctx *) (((void*)watcher) - sizeof(ev_io)); struct remote *remote = remote_ctx->remote; struct server *server = remote->server; LOGD("remote timeout\n"); ev_timer_stop(EV_A_ watcher); if (server == NULL) { close_and_free_remote(EV_A_ remote); return; } close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } static void remote_recv_cb (EV_P_ ev_io *w, int revents) { struct remote_ctx *remote_recv_ctx = (struct remote_ctx *)w; struct remote *remote = remote_recv_ctx->remote; struct server *server = remote->server; if (server == NULL) { close_and_free_remote(EV_A_ remote); return; } while (1) { ssize_t r = recv(remote->fd, server->buf, BUF_SIZE, 0); if (r == 0) { // connection closed server->buf_len = 0; close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else if(r < 0) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data // continue to wait for recv break; } else { perror("remote recv"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } decrypt_ctx(server->buf, r, server->d_ctx); int w = send(server->fd, server->buf, r, 0); if(w == -1) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data, wait for send server->buf_len = r; ev_io_stop(EV_A_ &remote_recv_ctx->io); ev_io_start(EV_A_ &server->send_ctx->io); break; } else { perror("send"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } else if(w < r) { char *pt = server->buf; char *et = pt + r; while (pt + w < et) { *pt = *(pt + w); pt++; } server->buf_len = r - w; assert(server->buf_len >= 0); ev_io_stop(EV_A_ &remote_recv_ctx->io); ev_io_start(EV_A_ &server->send_ctx->io); break; } } } static void remote_send_cb (EV_P_ ev_io *w, int revents) { struct remote_ctx *remote_send_ctx = (struct remote_ctx *)w; struct remote *remote = remote_send_ctx->remote; struct server *server = remote->server; if (!remote_send_ctx->connected) { struct sockaddr_storage addr; socklen_t len = sizeof addr; int r = getpeername(remote->fd, (struct sockaddr*)&addr, &len); if (r == 0) { remote_send_ctx->connected = 1; ev_io_stop(EV_A_ &remote_send_ctx->io); ev_timer_stop(EV_A_ &remote_send_ctx->watcher); ev_io_start(EV_A_ &server->recv_ctx->io); ev_io_start(EV_A_ &remote->recv_ctx->io); return; } else { perror("getpeername"); // not connected close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } else { if (remote->buf_len == 0) { // close and free close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else { // has data to send ssize_t r = send(remote->fd, remote->buf, remote->buf_len, 0); if (r < 0) { if (errno != EAGAIN && errno != EWOULDBLOCK) { perror("send"); // close and free close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } return; } if (r < remote->buf_len) { // partly sent, move memory, wait for the next time to send char *pt = remote->buf; char *et = pt + remote->buf_len; while (pt + r < et) { *pt = *(pt + r); pt++; } remote->buf_len -= r; assert(remote->buf_len >= 0); return; } else { // all sent out, wait for reading ev_io_stop(EV_A_ &remote_send_ctx->io); if (server != NULL) { ev_io_start(EV_A_ &server->recv_ctx->io); } else { close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } } } } struct remote* new_remote(int fd, int timeout) { struct remote *remote; remote = malloc(sizeof(struct remote)); remote->recv_ctx = malloc(sizeof(struct remote_ctx)); remote->send_ctx = malloc(sizeof(struct remote_ctx)); remote->fd = fd; ev_io_init(&remote->recv_ctx->io, remote_recv_cb, fd, EV_READ); ev_io_init(&remote->send_ctx->io, remote_send_cb, fd, EV_WRITE); ev_timer_init(&remote->send_ctx->watcher, remote_timeout_cb, timeout, 0); remote->recv_ctx->remote = remote; remote->recv_ctx->connected = 0; remote->send_ctx->remote = remote; remote->send_ctx->connected = 0; remote->buf_len = 0; return remote; } void free_remote(struct remote *remote) { if (remote != NULL) { if (remote->server != NULL) { remote->server->remote = NULL; } free(remote->recv_ctx); free(remote->send_ctx); free(remote); } } void close_and_free_remote(EV_P_ struct remote *remote) { if (remote != NULL) { ev_timer_stop(EV_A_ &remote->send_ctx->watcher); ev_io_stop(EV_A_ &remote->send_ctx->io); ev_io_stop(EV_A_ &remote->recv_ctx->io); close(remote->fd); free_remote(remote); } } struct server* new_server(int fd) { struct server *server; server = malloc(sizeof(struct server)); server->recv_ctx = malloc(sizeof(struct server_ctx)); server->send_ctx = malloc(sizeof(struct server_ctx)); server->fd = fd; ev_io_init(&server->recv_ctx->io, server_recv_cb, fd, EV_READ); ev_io_init(&server->send_ctx->io, server_send_cb, fd, EV_WRITE); server->recv_ctx->server = server; server->recv_ctx->connected = 0; server->send_ctx->server = server; server->send_ctx->connected = 0; server->stage = 0; if (enc_conf.method == RC4) { server->e_ctx = malloc(sizeof(struct rc4_state)); server->d_ctx = malloc(sizeof(struct rc4_state)); enc_ctx_init(server->e_ctx, 1); enc_ctx_init(server->d_ctx, 0); } else { server->e_ctx = NULL; server->d_ctx = NULL; } server->buf_len = 0; return server; } void free_server(struct server *server) { if (server != NULL) { if (server->remote != NULL) { server->remote->server = NULL; } if (enc_conf.method == RC4) { free(server->e_ctx); free(server->d_ctx); } free(server->recv_ctx); free(server->send_ctx); free(server); } } void close_and_free_server(EV_P_ struct server *server) { if (server != NULL) { ev_io_stop(EV_A_ &server->send_ctx->io); ev_io_stop(EV_A_ &server->recv_ctx->io); close(server->fd); free_server(server); } } static void accept_cb (EV_P_ ev_io *w, int revents) { struct listen_ctx *listener = (struct listen_ctx *)w; int serverfd; while (1) { serverfd = accept(listener->fd, NULL, NULL); if (serverfd == -1) { perror("accept"); break; } setnonblocking(serverfd); struct server *server = new_server(serverfd); struct addrinfo hints, *res; int sockfd; memset(&hints, 0, sizeof hints); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; int index = clock() % listener->remote_num; int err = getaddrinfo(listener->remote_host[index], listener->remote_port, &hints, &res); if (err) { perror("getaddrinfo"); close_and_free_server(EV_A_ server); break; } sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol); if (sockfd < 0) { perror("socket"); close(sockfd); close_and_free_server(EV_A_ server); freeaddrinfo(res); break; } struct timeval timeout; timeout.tv_sec = listener->timeout; timeout.tv_usec = 0; err = setsockopt(sockfd, SOL_SOCKET, SO_RCVTIMEO, (char *)&timeout, sizeof(timeout)); if (err) perror("setsockopt"); err = setsockopt(sockfd, SOL_SOCKET, SO_SNDTIMEO, (char *)&timeout, sizeof(timeout)); if (err) perror("setsockopt"); setnonblocking(sockfd); struct remote *remote = new_remote(sockfd, listener->timeout); server->remote = remote; remote->server = server; connect(sockfd, res->ai_addr, res->ai_addrlen); freeaddrinfo(res); // listen to remote connected event ev_io_start(EV_A_ &remote->send_ctx->io); ev_timer_start(EV_A_ &remote->send_ctx->watcher); break; } } int main (int argc, char **argv) { int i, c; int pid_flags = 0; char *local_port = NULL; char *password = NULL; char *timeout = NULL; char *method = NULL; char *pid_path = NULL; char *conf_path = NULL; int remote_num = 0; char *remote_host[MAX_REMOTE_NUM]; char *remote_port = NULL; opterr = 0; while ((c = getopt (argc, argv, "f:s:p:l:k:t:m:c:")) != -1) { switch (c) { case 's': remote_host[remote_num++] = optarg; break; case 'p': remote_port = optarg; break; case 'l': local_port = optarg; break; case 'k': password = optarg; break; case 'f': pid_flags = 1; pid_path = optarg; break; case 't': timeout = optarg; break; case 'm': method = optarg; break; case 'c': conf_path = optarg; break; } } if (opterr) { usage(); exit(EXIT_FAILURE); } if (conf_path != NULL) { jconf_t *conf = read_jconf(conf_path); if (remote_num == 0) { remote_num = conf->remote_num; for (i = 0; i < remote_num; i++) { remote_host[i] = conf->remote_host[i]; } } if (remote_port == NULL) remote_port = conf->remote_port; if (local_port == NULL) local_port = conf->local_port; if (password == NULL) password = conf->password; if (method == NULL) method = conf->method; if (timeout == NULL) timeout = conf->timeout; } if (remote_num == 0 || remote_port == NULL || local_port == NULL || password == NULL) { usage(); exit(EXIT_FAILURE); } if (timeout == NULL) timeout = "10"; if (pid_flags) { demonize(pid_path); } // ignore SIGPIPE signal(SIGPIPE, SIG_IGN); // Setup keys LOGD("calculating ciphers...\n"); enc_conf_init(password, method); // Setup socket int listenfd; listenfd = create_and_bind(local_port); if (listenfd < 0) { FATAL("bind() error..\n"); } if (listen(listenfd, SOMAXCONN) == -1) { FATAL("listen() error.\n"); } setnonblocking(listenfd); LOGD("server listening at port %s.\n", local_port); // Setup proxy context struct listen_ctx listen_ctx; listen_ctx.remote_num = remote_num; listen_ctx.remote_host = malloc(sizeof(char *) * remote_num); while (remote_num > 0) { int index = --remote_num; listen_ctx.remote_host[index] = strdup(remote_host[index]); } listen_ctx.remote_port = strdup(remote_port); listen_ctx.timeout = atoi(timeout); listen_ctx.fd = listenfd; struct ev_loop *loop = ev_default_loop(0); if (!loop) { FATAL("ev_loop error.\n"); } ev_io_init (&listen_ctx.io, accept_cb, listenfd, EV_READ); ev_io_start (loop, &listen_ctx.io); ev_run (loop, 0); return 0; }