5 changed files with 2029 additions and 0 deletions
Split View
Diff Options
-
207src/cache.c
-
17src/cache.h
-
793src/udprelay.c
-
64src/udprelay.h
-
948src/uthash.h
@ -0,0 +1,207 @@ |
|||
/* |
|||
* Original Author: Oliver Lorenz (ol), olli@olorenz.org, https://olorenz.org |
|||
* License: This is licensed under the same terms as uthash itself |
|||
*/ |
|||
|
|||
#include <errno.h> |
|||
#include <pthread.h> |
|||
#include <stdlib.h> |
|||
#include "cache.h" |
|||
#include "uthash.h" |
|||
|
|||
/** |
|||
* A cache entry |
|||
*/ |
|||
struct client_cache_entry { |
|||
char *key; /**<The key */ |
|||
void *data; /**<Payload */ |
|||
UT_hash_handle hh; /**<Hash Handle for uthash */ |
|||
}; |
|||
#define KEY_MAX_LENGTH 32 |
|||
|
|||
/** |
|||
* A cache object |
|||
*/ |
|||
struct client_cache { |
|||
size_t max_entries; /**<Amount of entries this cache object can hold */ |
|||
pthread_rwlock_t cache_lock; /**<A lock for concurrent access */ |
|||
struct client_cache_entry *entries; /**<Head pointer for uthash */ |
|||
void (*free_cb) (void *element);/**<Callback function to free cache entries */ |
|||
}; |
|||
|
|||
/** Creates a new cache object |
|||
|
|||
@param dst |
|||
Where the newly allocated cache object will be stored in |
|||
|
|||
@param capacity |
|||
The maximum number of elements this cache object can hold |
|||
|
|||
@return EINVAL if dst is NULL, ENOMEM if malloc fails, 0 otherwise |
|||
*/ |
|||
int client_cache_create(struct client_cache **dst, const size_t capacity, |
|||
void (*free_cb) (void *element)) |
|||
{ |
|||
struct client_cache *new = NULL; |
|||
int rv; |
|||
|
|||
if (!dst) |
|||
return EINVAL; |
|||
|
|||
if ((new = malloc(sizeof(*new))) == NULL) |
|||
return ENOMEM; |
|||
|
|||
if ((rv = pthread_rwlock_init(&(new->cache_lock), NULL)) != 0) |
|||
goto err_out; |
|||
|
|||
new->max_entries = capacity; |
|||
new->entries = NULL; |
|||
new->free_cb = free_cb; |
|||
*dst = new; |
|||
return 0; |
|||
|
|||
err_out: |
|||
if (new) |
|||
free(new); |
|||
return rv; |
|||
} |
|||
|
|||
/** Frees an allocated cache object |
|||
|
|||
@param cache |
|||
The cache object to free |
|||
|
|||
@param keep_data |
|||
Whether to free contained data or just delete references to it |
|||
|
|||
@return EINVAL if cache is NULL, 0 otherwise |
|||
*/ |
|||
int client_cache_delete(struct client_cache *cache, int keep_data) |
|||
{ |
|||
struct client_cache_entry *entry, *tmp; |
|||
int rv; |
|||
|
|||
if (!cache) |
|||
return EINVAL; |
|||
|
|||
rv = pthread_rwlock_wrlock(&(cache->cache_lock)); |
|||
if (rv) |
|||
return rv; |
|||
|
|||
if (keep_data) { |
|||
HASH_CLEAR(hh, cache->entries); |
|||
} else { |
|||
HASH_ITER(hh, cache->entries, entry, tmp) { |
|||
HASH_DEL(cache->entries, entry); |
|||
if (cache->free_cb) |
|||
cache->free_cb(entry->data); |
|||
free(entry); |
|||
} |
|||
} |
|||
(void)pthread_rwlock_unlock(&(cache->cache_lock)); |
|||
(void)pthread_rwlock_destroy(&(cache->cache_lock)); |
|||
free(cache); |
|||
cache = NULL; |
|||
return 0; |
|||
} |
|||
|
|||
/** Checks if a given key is in the cache |
|||
|
|||
@param cache |
|||
The cache object |
|||
|
|||
@param key |
|||
The key to look-up |
|||
|
|||
@param result |
|||
Where to store the result if key is found. |
|||
|
|||
A warning: Even though result is just a pointer, |
|||
you have to call this function with a **ptr, |
|||
otherwise this will blow up in your face. |
|||
|
|||
@return EINVAL if cache is NULL, 0 otherwise |
|||
*/ |
|||
int client_cache_lookup(struct client_cache *cache, char *key, void *result) |
|||
{ |
|||
int rv; |
|||
struct client_cache_entry *tmp = NULL; |
|||
char **dirty_hack = result; |
|||
|
|||
if (!cache || !key || !result) |
|||
return EINVAL; |
|||
|
|||
rv = pthread_rwlock_wrlock(&(cache->cache_lock)); |
|||
if (rv) |
|||
return rv; |
|||
|
|||
HASH_FIND_STR(cache->entries, key, tmp); |
|||
if (tmp) { |
|||
size_t key_len = strnlen(tmp->key, KEY_MAX_LENGTH); |
|||
HASH_DELETE(hh, cache->entries, tmp); |
|||
HASH_ADD_KEYPTR(hh, cache->entries, tmp->key, key_len, tmp); |
|||
*dirty_hack = tmp->data; |
|||
} else { |
|||
*dirty_hack = result = NULL; |
|||
} |
|||
rv = pthread_rwlock_unlock(&(cache->cache_lock)); |
|||
return rv; |
|||
} |
|||
|
|||
/** Inserts a given <key, value> pair into the cache |
|||
|
|||
@param cache |
|||
The cache object |
|||
|
|||
@param key |
|||
The key that identifies <value> |
|||
|
|||
@param data |
|||
Data associated with <key> |
|||
|
|||
@return EINVAL if cache is NULL, ENOMEM if malloc fails, 0 otherwise |
|||
*/ |
|||
int client_cache_insert(struct client_cache *cache, char *key, void *data) |
|||
{ |
|||
struct client_cache_entry *entry = NULL; |
|||
struct client_cache_entry *tmp_entry = NULL; |
|||
size_t key_len = 0; |
|||
int rv; |
|||
|
|||
if (!cache || !data) |
|||
return EINVAL; |
|||
|
|||
if ((entry = malloc(sizeof(*entry))) == NULL) |
|||
return ENOMEM; |
|||
|
|||
if ((rv = pthread_rwlock_wrlock(&(cache->cache_lock))) != 0) |
|||
goto err_out; |
|||
|
|||
entry->key = key; |
|||
entry->data = data; |
|||
key_len = strnlen(entry->key, KEY_MAX_LENGTH); |
|||
HASH_ADD_KEYPTR(hh, cache->entries, entry->key, key_len, entry); |
|||
|
|||
if (HASH_COUNT(cache->entries) >= cache->max_entries) { |
|||
HASH_ITER(hh, cache->entries, entry, tmp_entry) { |
|||
HASH_DELETE(hh, cache->entries, entry); |
|||
if (cache->free_cb) |
|||
cache->free_cb(entry->data); |
|||
else |
|||
free(entry->data); |
|||
/* free(key->key) if data has been copied */ |
|||
free(entry); |
|||
break; |
|||
} |
|||
} |
|||
|
|||
rv = pthread_rwlock_unlock(&(cache->cache_lock)); |
|||
return rv; |
|||
|
|||
err_out: |
|||
if (entry) |
|||
free(entry); |
|||
(void)pthread_rwlock_unlock(&(cache->cache_lock)); |
|||
return rv; |
|||
|
|||
} |
@ -0,0 +1,17 @@ |
|||
/* |
|||
* Original Author: Oliver Lorenz (ol), olli@olorenz.org, https://olorenz.org |
|||
* License: This is licensed under the same terms as uthash itself |
|||
*/ |
|||
|
|||
#ifndef _CACHE_ |
|||
#define _CACHE_ |
|||
|
|||
struct client_cache; |
|||
|
|||
extern int client_cache_create(struct foo_cache **dst, const size_t capacity, |
|||
void (*free_cb) (void *element)); |
|||
extern int client_cache_delete(struct foo_cache *cache, int keep_data); |
|||
extern int client_cache_lookup(struct foo_cache *cache, char *key, void *result); |
|||
extern int client_cache_insert(struct foo_cache *cache, char *key, void *data); |
|||
|
|||
#endif |
@ -0,0 +1,793 @@ |
|||
#include <sys/stat.h> |
|||
#include <sys/types.h> |
|||
#include <arpa/inet.h> |
|||
#include <errno.h> |
|||
#include <fcntl.h> |
|||
#include <locale.h> |
|||
#include <netdb.h> |
|||
#include <netinet/in.h> |
|||
#include <netinet/tcp.h> |
|||
#include <pthread.h> |
|||
#include <signal.h> |
|||
#include <string.h> |
|||
#include <strings.h> |
|||
#include <time.h> |
|||
#include <unistd.h> |
|||
|
|||
#ifdef HAVE_CONFIG_H |
|||
#include "config.h" |
|||
#endif |
|||
|
|||
#if defined(HAVE_SYS_IOCTL_H) && defined(HAVE_NET_IF_H) && defined(__linux__) |
|||
#include <net/if.h> |
|||
#include <sys/ioctl.h> |
|||
#define SET_INTERFACE |
|||
#endif |
|||
|
|||
#include "utils.h" |
|||
#include "udprelay.h" |
|||
#include "cache.h" |
|||
|
|||
#ifndef EAGAIN |
|||
#define EAGAIN EWOULDBLOCK |
|||
#endif |
|||
|
|||
#ifndef EWOULDBLOCK |
|||
#define EWOULDBLOCK EAGAIN |
|||
#endif |
|||
|
|||
static int verbose = 0; |
|||
static int client_conn = 0; |
|||
static int server_conn = 0; |
|||
|
|||
int setnonblocking(int fd) { |
|||
int flags; |
|||
if (-1 ==(flags = fcntl(fd, F_GETFL, 0))) |
|||
flags = 0; |
|||
return fcntl(fd, F_SETFL, flags | O_NONBLOCK); |
|||
} |
|||
|
|||
#ifdef SET_INTERFACE |
|||
int setinterface(int socket_fd, const char* interface_name) |
|||
{ |
|||
struct ifreq interface; |
|||
memset(&interface, 0, sizeof(interface)); |
|||
strncpy(interface.ifr_name, interface_name, IFNAMSIZ); |
|||
int res = setsockopt(socket_fd, SOL_SOCKET, SO_BINDTODEVICE, &interface, sizeof(struct ifreq)); |
|||
return res; |
|||
} |
|||
#endif |
|||
|
|||
int create_and_bind(const char *host, const char *port) { |
|||
struct addrinfo hints; |
|||
struct addrinfo *result, *rp; |
|||
int s, listen_sock; |
|||
|
|||
memset(&hints, 0, sizeof(struct addrinfo)); |
|||
hints.ai_family = AF_UNSPEC; /* Return IPv4 and IPv6 choices */ |
|||
hints.ai_socktype = SOCK_STREAM; /* We want a TCP socket */ |
|||
|
|||
s = getaddrinfo(host, port, &hints, &result); |
|||
if (s != 0) { |
|||
LOGE("getaddrinfo: %s", gai_strerror(s)); |
|||
return -1; |
|||
} |
|||
|
|||
for (rp = result; rp != NULL; rp = rp->ai_next) { |
|||
listen_sock = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); |
|||
if (listen_sock == -1) |
|||
continue; |
|||
|
|||
int opt = 1; |
|||
setsockopt(listen_sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)); |
|||
setsockopt(listen_sock, IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt)); |
|||
#ifdef SO_NOSIGPIPE |
|||
setsockopt(listen_sock, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt)); |
|||
#endif |
|||
|
|||
s = bind(listen_sock, rp->ai_addr, rp->ai_addrlen); |
|||
if (s == 0) { |
|||
/* We managed to bind successfully! */ |
|||
break; |
|||
} else { |
|||
ERROR("bind"); |
|||
} |
|||
|
|||
close(listen_sock); |
|||
} |
|||
|
|||
if (rp == NULL) { |
|||
LOGE("Could not bind"); |
|||
return -1; |
|||
} |
|||
|
|||
freeaddrinfo(result); |
|||
|
|||
return listen_sock; |
|||
} |
|||
|
|||
struct client *connect_to_client(struct addrinfo *res, const char *iface) { |
|||
int sockfd; |
|||
int opt = 1; |
|||
|
|||
// initilize client socks |
|||
sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol); |
|||
if (sockfd < 0) { |
|||
ERROR("socket"); |
|||
close(sockfd); |
|||
return NULL; |
|||
} |
|||
|
|||
setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt)); |
|||
#ifdef SO_NOSIGPIPE |
|||
setsockopt(sockfd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt)); |
|||
#endif |
|||
|
|||
struct client *client = new_client(sockfd); |
|||
|
|||
// setup client socks |
|||
setnonblocking(sockfd); |
|||
#ifdef SET_INTERFACE |
|||
if (iface) setinterface(sockfd, iface); |
|||
#endif |
|||
|
|||
connect(sockfd, res->ai_addr, res->ai_addrlen); |
|||
|
|||
return client; |
|||
} |
|||
|
|||
static void server_recv_cb (EV_P_ ev_io *w, int revents) { |
|||
struct server_ctx *server_recv_ctx = (struct server_ctx *)w; |
|||
struct server *server = server_recv_ctx->server; |
|||
struct client *client = NULL; |
|||
|
|||
int len = server->buf_len; |
|||
char **buf = &server->buf; |
|||
|
|||
ev_timer_again(EV_A_ &server->recv_ctx->watcher); |
|||
|
|||
if (server->stage != 0) { |
|||
client = server->client; |
|||
buf = &client->buf; |
|||
len = 0; |
|||
} |
|||
|
|||
ssize_t r = recv(server->fd, *buf + len, BUF_SIZE - len, 0); |
|||
|
|||
if (r == 0) { |
|||
// connection closed |
|||
if (verbose) { |
|||
LOGD("server_recv close the connection"); |
|||
} |
|||
close_and_free_client(EV_A_ client); |
|||
close_and_free_server(EV_A_ server); |
|||
return; |
|||
} else if (r == -1) { |
|||
if (errno == EAGAIN || errno == EWOULDBLOCK) { |
|||
// no data |
|||
// continue to wait for recv |
|||
return; |
|||
} else { |
|||
ERROR("server recv"); |
|||
close_and_free_client(EV_A_ client); |
|||
close_and_free_server(EV_A_ server); |
|||
return; |
|||
} |
|||
} |
|||
|
|||
// handle incomplete header |
|||
if (server->stage == 0) { |
|||
r += server->buf_len; |
|||
if (r <= enc_get_iv_len()) { |
|||
// wait for more |
|||
if (verbose) { |
|||
LOGD("imcomplete header: %zu", r); |
|||
} |
|||
server->buf_len = r; |
|||
return; |
|||
} else { |
|||
server->buf_len = 0; |
|||
} |
|||
} |
|||
|
|||
*buf = ss_decrypt(*buf, &r, server->d_ctx); |
|||
|
|||
if (*buf == NULL) { |
|||
LOGE("invalid password or cipher"); |
|||
close_and_free_client(EV_A_ client); |
|||
close_and_free_server(EV_A_ server); |
|||
return; |
|||
} |
|||
|
|||
// handshake and transmit data |
|||
if (server->stage == 5) { |
|||
int s = send(client->fd, client->buf, r, 0); |
|||
if (s == -1) { |
|||
if (errno == EAGAIN || errno == EWOULDBLOCK) { |
|||
// no data, wait for send |
|||
client->buf_len = r; |
|||
client->buf_idx = 0; |
|||
ev_io_stop(EV_A_ &server_recv_ctx->io); |
|||
ev_io_start(EV_A_ &client->send_ctx->io); |
|||
} else { |
|||
ERROR("server_recv_send"); |
|||
close_and_free_client(EV_A_ client); |
|||
close_and_free_server(EV_A_ server); |
|||
} |
|||
} else if (s < r) { |
|||
client->buf_len = r - s; |
|||
client->buf_idx = s; |
|||
ev_io_stop(EV_A_ &server_recv_ctx->io); |
|||
ev_io_start(EV_A_ &client->send_ctx->io); |
|||
} |
|||
return; |
|||
|
|||
} else if (server->stage == 0) { |
|||
|
|||
/* |
|||
* Shadowsocks Protocol: |
|||
* |
|||
* +------+----------+----------+ |
|||
* | ATYP | DST.ADDR | DST.PORT | |
|||
* +------+----------+----------+ |
|||
* | 1 | Variable | 2 | |
|||
* +------+----------+----------+ |
|||
*/ |
|||
|
|||
int offset = 0; |
|||
char atyp = server->buf[offset++]; |
|||
char host[256]; |
|||
char port[64]; |
|||
memset(host, 0, 256); |
|||
int p = 0; |
|||
|
|||
// get client addr and port |
|||
if (atyp == 1) { |
|||
// IP V4 |
|||
size_t in_addr_len = sizeof(struct in_addr); |
|||
if (r > in_addr_len) { |
|||
inet_ntop(AF_INET, (const void *)(server->buf + offset), |
|||
host, INET_ADDRSTRLEN); |
|||
offset += in_addr_len; |
|||
} |
|||
} else if (atyp == 3) { |
|||
// Domain name |
|||
uint8_t name_len = *(uint8_t *)(server->buf + offset); |
|||
if (name_len < r && name_len < 255 && name_len > 0) { |
|||
memcpy(host, server->buf + offset + 1, name_len); |
|||
offset += name_len + 1; |
|||
} |
|||
} else if (atyp == 4) { |
|||
// IP V6 |
|||
size_t in6_addr_len = sizeof(struct in6_addr); |
|||
if (r > in6_addr_len) { |
|||
inet_ntop(AF_INET6, (const void*)(server->buf + offset), |
|||
host, INET6_ADDRSTRLEN); |
|||
offset += in6_addr_len; |
|||
} |
|||
} |
|||
|
|||
if (offset == 1) { |
|||
LOGE("invalid header with addr type %d", atyp); |
|||
close_and_free_server(EV_A_ server); |
|||
return; |
|||
} |
|||
|
|||
p = ntohs(*(uint16_t *)(server->buf + offset)); |
|||
offset += 2; |
|||
|
|||
sprintf(port, "%d", p); |
|||
|
|||
if (verbose) { |
|||
LOGD("connect to: %s:%s", host, port); |
|||
} |
|||
|
|||
struct addrinfo hints; |
|||
asyncns_query_t *query; |
|||
memset(&hints, 0, sizeof hints); |
|||
hints.ai_family = AF_UNSPEC; |
|||
hints.ai_socktype = SOCK_STREAM; |
|||
|
|||
query = asyncns_getaddrinfo(server->shadowsocks_ctx->asyncns, |
|||
host, port, &hints); |
|||
|
|||
if (query == NULL) { |
|||
ERROR("asyncns_getaddrinfo"); |
|||
close_and_free_server(EV_A_ server); |
|||
return; |
|||
} |
|||
|
|||
// XXX: should handle buffer carefully |
|||
if (r > offset) { |
|||
server->buf_len = r - offset; |
|||
server->buf_idx = offset; |
|||
} |
|||
|
|||
server->stage = 4; |
|||
server->query = query; |
|||
|
|||
ev_io_stop(EV_A_ &server_recv_ctx->io); |
|||
ev_timer_start(EV_A_ &server->send_ctx->watcher); |
|||
|
|||
return; |
|||
} |
|||
// should not reach here |
|||
FATAL("server context error."); |
|||
} |
|||
|
|||
static void server_send_cb (EV_P_ ev_io *w, int revents) { |
|||
struct server_ctx *server_send_ctx = (struct server_ctx *)w; |
|||
struct server *server = server_send_ctx->server; |
|||
struct client *client = server->client; |
|||
|
|||
if (client == NULL) { |
|||
LOGE("invalid server."); |
|||
close_and_free_server(EV_A_ server); |
|||
return; |
|||
} |
|||
|
|||
if (server->buf_len == 0) { |
|||
// close and free |
|||
if (verbose) { |
|||
LOGD("server_send close the connection"); |
|||
} |
|||
close_and_free_client(EV_A_ client); |
|||
close_and_free_server(EV_A_ server); |
|||
return; |
|||
} else { |
|||
// has data to send |
|||
ssize_t s = send(server->fd, server->buf + server->buf_idx, |
|||
server->buf_len, 0); |
|||
if (s < 0) { |
|||
if (errno != EAGAIN && errno != EWOULDBLOCK) { |
|||
ERROR("server_send_send"); |
|||
close_and_free_client(EV_A_ client); |
|||
close_and_free_server(EV_A_ server); |
|||
} |
|||
return; |
|||
} else if (s < server->buf_len) { |
|||
// partly sent, move memory, wait for the next time to send |
|||
server->buf_len -= s; |
|||
server->buf_idx += s; |
|||
return; |
|||
} else { |
|||
// all sent out, wait for reading |
|||
server->buf_len = 0; |
|||
server->buf_idx = 0; |
|||
ev_io_stop(EV_A_ &server_send_ctx->io); |
|||
if (client != NULL) { |
|||
ev_io_start(EV_A_ &client->recv_ctx->io); |
|||
return; |
|||
} else { |
|||
LOGE("invalid client."); |
|||
close_and_free_client(EV_A_ client); |
|||
close_and_free_server(EV_A_ server); |
|||
return; |
|||
} |
|||
} |
|||
} |
|||
} |
|||
|
|||
static void server_timeout_cb(EV_P_ ev_timer *watcher, int revents) { |
|||
struct server_ctx *server_ctx = (struct server_ctx *) (((void*)watcher) |
|||
- sizeof(ev_io)); |
|||
struct server *server = server_ctx->server; |
|||
struct client *client = server->client; |
|||
|
|||
LOGE("TCP connection timeout"); |
|||
|
|||
ev_timer_stop(EV_A_ watcher); |
|||
|
|||
close_and_free_client(EV_A_ client); |
|||
close_and_free_server(EV_A_ server); |
|||
} |
|||
|
|||
static void server_resolve_cb(EV_P_ ev_timer *watcher, int revents) { |
|||
int err; |
|||
struct addrinfo *result, *rp; |
|||
struct server_ctx *server_ctx = (struct server_ctx *) (((void*)watcher) |
|||
- sizeof(ev_io)); |
|||
struct server *server = server_ctx->server; |
|||
asyncns_t *asyncns = server->shadowsocks_ctx->asyncns; |
|||
asyncns_query_t *query = server->query; |
|||
|
|||
if (asyncns == NULL || query == NULL) { |
|||
LOGE("invalid dns query."); |
|||
close_and_free_server(EV_A_ server); |
|||
return; |
|||
} |
|||
|
|||
if (asyncns_wait(asyncns, 0) == -1) { |
|||
// asyncns error |
|||
FATAL("asyncns exit unexpectedly."); |
|||
} |
|||
|
|||
if (!asyncns_isdone(asyncns, query)) { |
|||
// wait for reolver |
|||
return; |
|||
} |
|||
|
|||
if (verbose) { |
|||
LOGD("asyncns resolved."); |
|||
} |
|||
|
|||
ev_timer_stop(EV_A_ watcher); |
|||
|
|||
err = asyncns_getaddrinfo_done(asyncns, query, &result); |
|||
|
|||
if (err) { |
|||
ERROR("getaddrinfo"); |
|||
close_and_free_server(EV_A_ server); |
|||
} else { |
|||
// Use IPV4 address if possible |
|||
for (rp = result; rp != NULL; rp = rp->ai_next) { |
|||
if (rp->ai_family == AF_INET) break; |
|||
} |
|||
|
|||
if (rp == NULL) { |
|||
rp = result; |
|||
} |
|||
|
|||
struct client *client = connect_to_client(rp, server->shadowsocks_ctx->iface); |
|||
|
|||
if (client == NULL) { |
|||
LOGE("connect error."); |
|||
close_and_free_server(EV_A_ server); |
|||
} else { |
|||
server->client = client; |
|||
client->server = server; |
|||
|
|||
// XXX: should handel buffer carefully |
|||
if (server->buf_len > 0) { |
|||
memcpy(client->buf, server->buf + server->buf_idx, server->buf_len); |
|||
client->buf_len = server->buf_len; |
|||
client->buf_idx = 0; |
|||
server->buf_len = 0; |
|||
server->buf_idx = 0; |
|||
} |
|||
|
|||
// listen to client connected event |
|||
ev_io_start(EV_A_ &client->send_ctx->io); |
|||
} |
|||
} |
|||
|
|||
// release addrinfo |
|||
asyncns_freeaddrinfo(result); |
|||
} |
|||
|
|||
static void client_recv_cb (EV_P_ ev_io *w, int revents) { |
|||
struct client_ctx *client_recv_ctx = (struct client_ctx *)w; |
|||
struct client *client = client_recv_ctx->client; |
|||
struct server *server = client->server; |
|||
|
|||
if (server == NULL) { |
|||
LOGE("invalid server."); |
|||
close_and_free_client(EV_A_ client); |
|||
return; |
|||
} |
|||
|
|||
ev_timer_again(EV_A_ &server->recv_ctx->watcher); |
|||
|
|||
ssize_t r = recv(client->fd, server->buf, BUF_SIZE, 0); |
|||
|
|||
if (r == 0) { |
|||
// connection closed |
|||
if (verbose) { |
|||
LOGD("client_recv close the connection"); |
|||
} |
|||
close_and_free_client(EV_A_ client); |
|||
close_and_free_server(EV_A_ server); |
|||
return; |
|||
} else if (r < 0) { |
|||
if (errno == EAGAIN || errno == EWOULDBLOCK) { |
|||
// no data |
|||
// continue to wait for recv |
|||
return; |
|||
} else { |
|||
ERROR("client recv"); |
|||
close_and_free_client(EV_A_ client); |
|||
close_and_free_server(EV_A_ server); |
|||
return; |
|||
} |
|||
} |
|||
|
|||
server->buf = ss_encrypt(server->buf, &r, server->e_ctx); |
|||
|
|||
if (server->buf == NULL) { |
|||
LOGE("invalid password or cipher"); |
|||
close_and_free_client(EV_A_ client); |
|||
close_and_free_server(EV_A_ server); |
|||
return; |
|||
} |
|||
|
|||
int s = send(server->fd, server->buf, r, 0); |
|||
|
|||
if (s == -1) { |
|||
if (errno == EAGAIN || errno == EWOULDBLOCK) { |
|||
// no data, wait for send |
|||
server->buf_len = r; |
|||
server->buf_idx = 0; |
|||
ev_io_stop(EV_A_ &client_recv_ctx->io); |
|||
ev_io_start(EV_A_ &server->send_ctx->io); |
|||
} else { |
|||
ERROR("client_recv_send"); |
|||
close_and_free_client(EV_A_ client); |
|||
close_and_free_server(EV_A_ server); |
|||
} |
|||
return; |
|||
} else if (s < r) { |
|||
server->buf_len = r - s; |
|||
server->buf_idx = s; |
|||
ev_io_stop(EV_A_ &client_recv_ctx->io); |
|||
ev_io_start(EV_A_ &server->send_ctx->io); |
|||
return; |
|||
} |
|||
} |
|||
|
|||
static void client_send_cb (EV_P_ ev_io *w, int revents) { |
|||
struct client_ctx *client_send_ctx = (struct client_ctx *)w; |
|||
struct client *client = client_send_ctx->client; |
|||
struct server *server = client->server; |
|||
|
|||
if (server == NULL) { |
|||
LOGE("invalid server."); |
|||
close_and_free_client(EV_A_ client); |
|||
return; |
|||
} |
|||
|
|||
if (!client_send_ctx->connected) { |
|||
|
|||
struct sockaddr_storage addr; |
|||
socklen_t len = sizeof addr; |
|||
int r = getpeername(client->fd, (struct sockaddr*)&addr, &len); |
|||
if (r == 0) { |
|||
if (verbose) { |
|||
LOGD("client connected."); |
|||
} |
|||
client_send_ctx->connected = 1; |
|||
|
|||
if (client->buf_len == 0) { |
|||
server->stage = 5; |
|||
ev_io_stop(EV_A_ &client_send_ctx->io); |
|||
ev_io_start(EV_A_ &server->recv_ctx->io); |
|||
ev_io_start(EV_A_ &client->recv_ctx->io); |
|||
return; |
|||
} |
|||
|
|||
} else { |
|||
ERROR("getpeername"); |
|||
// not connected |
|||
close_and_free_client(EV_A_ client); |
|||
close_and_free_server(EV_A_ server); |
|||
return; |
|||
} |
|||
} |
|||
|
|||
if (client->buf_len == 0) { |
|||
// close and free |
|||
if (verbose) { |
|||
LOGD("client_send close the connection"); |
|||
} |
|||
close_and_free_client(EV_A_ client); |
|||
close_and_free_server(EV_A_ server); |
|||
return; |
|||
} else { |
|||
// has data to send |
|||
ssize_t s = send(client->fd, client->buf + client->buf_idx, |
|||
client->buf_len, 0); |
|||
if (s == -1) { |
|||
if (errno != EAGAIN && errno != EWOULDBLOCK) { |
|||
ERROR("client_send_send"); |
|||
// close and free |
|||
close_and_free_client(EV_A_ client); |
|||
close_and_free_server(EV_A_ server); |
|||
} |
|||
return; |
|||
} else if (s < client->buf_len) { |
|||
// partly sent, move memory, wait for the next time to send |
|||
client->buf_len -= s; |
|||
client->buf_idx += s; |
|||
return; |
|||
} else { |
|||
// all sent out, wait for reading |
|||
client->buf_len = 0; |
|||
client->buf_idx = 0; |
|||
ev_io_stop(EV_A_ &client_send_ctx->io); |
|||
if (server != NULL) { |
|||
ev_io_start(EV_A_ &server->recv_ctx->io); |
|||
if (server->stage == 4) { |
|||
server->stage = 5; |
|||
ev_io_start(EV_A_ &client->recv_ctx->io); |
|||
} |
|||
} else { |
|||
LOGE("invalid server."); |
|||
close_and_free_client(EV_A_ client); |
|||
close_and_free_server(EV_A_ server); |
|||
} |
|||
return; |
|||
} |
|||
} |
|||
} |
|||
|
|||
struct client* new_client(int fd) { |
|||
client_conn++; |
|||
struct client *client; |
|||
client = malloc(sizeof(struct client)); |
|||
client->buf = malloc(BUF_SIZE); |
|||
client->recv_ctx = malloc(sizeof(struct client_ctx)); |
|||
client->send_ctx = malloc(sizeof(struct client_ctx)); |
|||
client->fd = fd; |
|||
ev_io_init(&client->recv_ctx->io, client_recv_cb, fd, EV_READ); |
|||
ev_io_init(&client->send_ctx->io, client_send_cb, fd, EV_WRITE); |
|||
client->recv_ctx->client = client; |
|||
client->recv_ctx->connected = 0; |
|||
client->send_ctx->client = client; |
|||
client->send_ctx->connected = 0; |
|||
client->buf_len = 0; |
|||
client->buf_idx = 0; |
|||
client->server = NULL; |
|||
return client; |
|||
} |
|||
|
|||
void free_client(struct client *client) { |
|||
client_conn--; |
|||
if (client != NULL) { |
|||
if (client->server != NULL) { |
|||
client->server->client = NULL; |
|||
} |
|||
if (client->buf != NULL) { |
|||
free(client->buf); |
|||
} |
|||
free(client->recv_ctx); |
|||
free(client->send_ctx); |
|||
free(client); |
|||
} |
|||
} |
|||
|
|||
void close_and_free_client(EV_P_ struct client *client) { |
|||
if (client != NULL) { |
|||
ev_io_stop(EV_A_ &client->send_ctx->io); |
|||
ev_io_stop(EV_A_ &client->recv_ctx->io); |
|||
close(client->fd); |
|||
free_client(client); |
|||
} |
|||
if (verbose) { |
|||
LOGD("current client connection: %d", client_conn); |
|||
} |
|||
} |
|||
|
|||
struct server* new_server(int fd, struct shadowsocks_ctx *listener) { |
|||
server_conn++; |
|||
struct server *server; |
|||
server = malloc(sizeof(struct server)); |
|||
server->buf = malloc(BUF_SIZE); |
|||
server->recv_ctx = malloc(sizeof(struct server_ctx)); |
|||
server->send_ctx = malloc(sizeof(struct server_ctx)); |
|||
server->fd = fd; |
|||
ev_io_init(&server->recv_ctx->io, server_recv_cb, fd, EV_READ); |
|||
ev_io_init(&server->send_ctx->io, server_send_cb, fd, EV_WRITE); |
|||
ev_timer_init(&server->send_ctx->watcher, server_resolve_cb, 0.2, 0.5); |
|||
ev_timer_init(&server->recv_ctx->watcher, server_timeout_cb, listener->timeout, listener->timeout * 5); |
|||
server->recv_ctx->server = server; |
|||
server->recv_ctx->connected = 0; |
|||
server->send_ctx->server = server; |
|||
server->send_ctx->connected = 0; |
|||
server->stage = 0; |
|||
server->query = NULL; |
|||
server->shadowsocks_ctx = listener; |
|||
if (listener->method) { |
|||
server->e_ctx = malloc(sizeof(struct enc_ctx)); |
|||
server->d_ctx = malloc(sizeof(struct enc_ctx)); |
|||
enc_ctx_init(listener->method, server->e_ctx, 1); |
|||
enc_ctx_init(listener->method, server->d_ctx, 0); |
|||
} else { |
|||
server->e_ctx = NULL; |
|||
server->d_ctx = NULL; |
|||
} |
|||
server->buf_len = 0; |
|||
server->buf_idx = 0; |
|||
server->client = NULL; |
|||
return server; |
|||
} |
|||
|
|||
void free_server(struct server *server) { |
|||
server_conn--; |
|||
if (server != NULL) { |
|||
if (server->client != NULL) { |
|||
server->client->server = NULL; |
|||
} |
|||
if (server->e_ctx != NULL) { |
|||
EVP_CIPHER_CTX_cleanup(&server->e_ctx->evp); |
|||
free(server->e_ctx); |
|||
} |
|||
if (server->d_ctx != NULL) { |
|||
EVP_CIPHER_CTX_cleanup(&server->d_ctx->evp); |
|||
free(server->d_ctx); |
|||
} |
|||
if (server->buf != NULL) { |
|||
free(server->buf); |
|||
} |
|||
free(server->recv_ctx); |
|||
free(server->send_ctx); |
|||
free(server); |
|||
} |
|||
} |
|||
|
|||
void close_and_free_server(EV_P_ struct server *server) { |
|||
if (server != NULL) { |
|||
ev_io_stop(EV_A_ &server->send_ctx->io); |
|||
ev_io_stop(EV_A_ &server->recv_ctx->io); |
|||
ev_timer_stop(EV_A_ &server->send_ctx->watcher); |
|||
ev_timer_stop(EV_A_ &server->recv_ctx->watcher); |
|||
close(server->fd); |
|||
free_server(server); |
|||
} |
|||
if (verbose) { |
|||
LOGD("current server connection: %d", server_conn); |
|||
} |
|||
} |
|||
|
|||
static void accept_cb (EV_P_ ev_io *w, int revents) { |
|||
struct shadowsocks_ctx *listener = (struct shadowsocks_ctx *)w; |
|||
int serverfd = accept(listener->fd, NULL, NULL); |
|||
if (serverfd == -1) { |
|||
ERROR("accept"); |
|||
return; |
|||
} |
|||
setnonblocking(serverfd); |
|||
|
|||
int opt = 1; |
|||
setsockopt(serverfd, IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt)); |
|||
#ifdef SO_NOSIGPIPE |
|||
setsockopt(serverfd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt)); |
|||
#endif |
|||
|
|||
if (verbose) { |
|||
LOGD("accept a connection."); |
|||
} |
|||
|
|||
struct server *server = new_server(serverfd, listener); |
|||
ev_io_start(EV_A_ &server->recv_ctx->io); |
|||
ev_timer_start(EV_A_ &server->recv_ctx->watcher); |
|||
} |
|||
|
|||
int udprelay(char *server_host, int server_num, char *server_port, |
|||
int method, int timeout, char *iface) { |
|||
|
|||
int i, c; |
|||
|
|||
// inilitialize ev loop |
|||
struct ev_loop *loop = EV_DEFAULT; |
|||
|
|||
// bind to each interface |
|||
while (server_num > 0) { |
|||
int index = --server_num; |
|||
const char* host = server_host[index]; |
|||
|
|||
// Bind to port |
|||
int serverfd = create_and_bind(host, server_port); |
|||
if (listenfd < 0) { |
|||
FATAL("bind() error.."); |
|||
} |
|||
setnonblocking(serverfd); |
|||
LOGD("server listening at port %s.", server_port); |
|||
|
|||
// Setup proxy context |
|||
struct shadowsocks_ctx shadowsocks_ctx; |
|||
shadowsocks_ctx.timeout = timeout; |
|||
shadowsocks_ctx.method = method; |
|||
shadowsocks_ctx.iface = iface; |
|||
|
|||
struct server_ctx server_ctx; |
|||
server_ctx.asyncns = asyncns; |
|||
server_ctx.shadowsocks_ctx = |
|||
|
|||
ev_io_init (&shadowsocks_ctx.io, accept_cb, listenfd, EV_READ); |
|||
ev_io_start (loop, &shadowsocks_ctx.io); |
|||
} |
|||
|
|||
// start ev loop |
|||
ev_run (loop, 0); |
|||
return 0; |
|||
} |
|||
|
@ -0,0 +1,64 @@ |
|||
#ifndef _SERVER_H |
|||
#define _SERVER_H |
|||
|
|||
#include <ev.h> |
|||
#include <time.h> |
|||
|
|||
#include "encrypt.h" |
|||
#include "jconf.h" |
|||
#include "asyncns.h" |
|||
|
|||
struct server_ctx { |
|||
ev_io io; |
|||
ev_timer watcher; |
|||
int connected; |
|||
struct server *server; |
|||
}; |
|||
|
|||
struct server { |
|||
int fd; |
|||
int buf_len; |
|||
int buf_idx; |
|||
int timeout; |
|||
int method; |
|||
char *iface; |
|||
char *buf; // server send from, client recv into |
|||
struct server_ctx *recv_ctx; |
|||
struct server_ctx *send_ctx; |
|||
asyncns_query_t *query; |
|||
struct client *client; |
|||
}; |
|||
|
|||
struct client_ctx { |
|||
ev_io io; |
|||
struct client *client; |
|||
}; |
|||
|
|||
struct client { |
|||
int fd; |
|||
int buf_len; |
|||
int buf_idx; |
|||
char *buf; // client send from, server recv into |
|||
struct enc_ctx *e_ctx; |
|||
struct enc_ctx *d_ctx; |
|||
struct client_ctx *recv_ctx; |
|||
struct client_ctx *send_ctx; |
|||
struct server *server; |
|||
}; |
|||
|
|||
static void server_recv_cb (EV_P_ ev_io *w, int revents); |
|||
static void server_send_cb (EV_P_ ev_io *w, int revents); |
|||
static void client_recv_cb (EV_P_ ev_io *w, int revents); |
|||
static void client_send_cb (EV_P_ ev_io *w, int revents); |
|||
static void server_timeout_cb(EV_P_ ev_timer *watcher, int revents); |
|||
static void server_resolve_cb(EV_P_ ev_timer *watcher, int revents); |
|||
|
|||
struct client* new_client(int fd); |
|||
struct client *connect_to_client(struct addrinfo *res, const char *iface); |
|||
void free_client(struct client *client); |
|||
void close_and_free_client(EV_P_ struct client *client); |
|||
struct server* new_server(int fd, struct listen_ctx *listener); |
|||
void free_server(struct server *server); |
|||
void close_and_free_server(EV_P_ struct server *server); |
|||
|
|||
#endif // _SERVER_H |
@ -0,0 +1,948 @@ |
|||
/* |
|||
Copyright (c) 2003-2013, Troy D. Hanson http://troydhanson.github.com/uthash/ |
|||
All rights reserved. |
|||
|
|||
Redistribution and use in source and binary forms, with or without |
|||
modification, are permitted provided that the following conditions are met: |
|||
|
|||
* Redistributions of source code must retain the above copyright |
|||
notice, this list of conditions and the following disclaimer. |
|||
|
|||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
|||
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
|||
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A |
|||
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
|||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
|||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
|||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
|||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
|||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
|||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
|||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|||
*/ |
|||
|
|||
#ifndef UTHASH_H |
|||
#define UTHASH_H |
|||
|
|||
#include <string.h> /* memcmp,strlen */ |
|||
#include <stddef.h> /* ptrdiff_t */ |
|||
#include <stdlib.h> /* exit() */ |
|||
|
|||
/* These macros use decltype or the earlier __typeof GNU extension. |
|||
As decltype is only available in newer compilers (VS2010 or gcc 4.3+ |
|||
when compiling c++ source) this code uses whatever method is needed |
|||
or, for VS2008 where neither is available, uses casting workarounds. */ |
|||
#ifdef _MSC_VER /* MS compiler */ |
|||
#if _MSC_VER >= 1600 && defined(__cplusplus) /* VS2010 or newer in C++ mode */ |
|||
#define DECLTYPE(x) (decltype(x)) |
|||
#else /* VS2008 or older (or VS2010 in C mode) */ |
|||
#define NO_DECLTYPE |
|||
#define DECLTYPE(x) |
|||
#endif |
|||
#else /* GNU, Sun and other compilers */ |
|||
#define DECLTYPE(x) (__typeof(x)) |
|||
#endif |
|||
|
|||
#ifdef NO_DECLTYPE |
|||
#define DECLTYPE_ASSIGN(dst,src) \ |
|||
do { \ |
|||
char **_da_dst = (char**)(&(dst)); \ |
|||
*_da_dst = (char*)(src); \ |
|||
} while(0) |
|||
#else |
|||
#define DECLTYPE_ASSIGN(dst,src) \ |
|||
do { \ |
|||
(dst) = DECLTYPE(dst)(src); \ |
|||
} while(0) |
|||
#endif |
|||
|
|||
/* a number of the hash function use uint32_t which isn't defined on win32 */ |
|||
#ifdef _MSC_VER |
|||
typedef unsigned int uint32_t; |
|||
typedef unsigned char uint8_t; |
|||
#else |
|||
#include <inttypes.h> /* uint32_t */ |
|||
#endif |
|||
|
|||
#define UTHASH_VERSION 1.9.8 |
|||
|
|||
#ifndef uthash_fatal |
|||
#define uthash_fatal(msg) exit(-1) /* fatal error (out of memory,etc) */ |
|||
#endif |
|||
#ifndef uthash_malloc |
|||
#define uthash_malloc(sz) malloc(sz) /* malloc fcn */ |
|||
#endif |
|||
#ifndef uthash_free |
|||
#define uthash_free(ptr,sz) free(ptr) /* free fcn */ |
|||
#endif |
|||
|
|||
#ifndef uthash_noexpand_fyi |
|||
#define uthash_noexpand_fyi(tbl) /* can be defined to log noexpand */ |
|||
#endif |
|||
#ifndef uthash_expand_fyi |
|||
#define uthash_expand_fyi(tbl) /* can be defined to log expands */ |
|||
#endif |
|||
|
|||
/* initial number of buckets */ |
|||
#define HASH_INITIAL_NUM_BUCKETS 32 /* initial number of buckets */ |
|||
#define HASH_INITIAL_NUM_BUCKETS_LOG2 5 /* lg2 of initial number of buckets */ |
|||
#define HASH_BKT_CAPACITY_THRESH 10 /* expand when bucket count reaches */ |
|||
|
|||
/* calculate the element whose hash handle address is hhe */ |
|||
#define ELMT_FROM_HH(tbl,hhp) ((void*)(((char*)(hhp)) - ((tbl)->hho))) |
|||
|
|||
#define HASH_FIND(hh,head,keyptr,keylen,out) \ |
|||
do { \ |
|||
unsigned _hf_bkt,_hf_hashv; \ |
|||
out=NULL; \ |
|||
if (head) { \ |
|||
HASH_FCN(keyptr,keylen, (head)->hh.tbl->num_buckets, _hf_hashv, _hf_bkt); \ |
|||
if (HASH_BLOOM_TEST((head)->hh.tbl, _hf_hashv)) { \ |
|||
HASH_FIND_IN_BKT((head)->hh.tbl, hh, (head)->hh.tbl->buckets[ _hf_bkt ], \ |
|||
keyptr,keylen,out); \ |
|||
} \ |
|||
} \ |
|||
} while (0) |
|||
|
|||
#ifdef HASH_BLOOM |
|||
#define HASH_BLOOM_BITLEN (1ULL << HASH_BLOOM) |
|||
#define HASH_BLOOM_BYTELEN (HASH_BLOOM_BITLEN/8) + ((HASH_BLOOM_BITLEN%8) ? 1:0) |
|||
#define HASH_BLOOM_MAKE(tbl) \ |
|||
do { \ |
|||
(tbl)->bloom_nbits = HASH_BLOOM; \ |
|||
(tbl)->bloom_bv = (uint8_t*)uthash_malloc(HASH_BLOOM_BYTELEN); \ |
|||
if (!((tbl)->bloom_bv)) { uthash_fatal( "out of memory"); } \ |
|||
memset((tbl)->bloom_bv, 0, HASH_BLOOM_BYTELEN); \ |
|||
(tbl)->bloom_sig = HASH_BLOOM_SIGNATURE; \ |
|||
} while (0) |
|||
|
|||
#define HASH_BLOOM_FREE(tbl) \ |
|||
do { \ |
|||
uthash_free((tbl)->bloom_bv, HASH_BLOOM_BYTELEN); \ |
|||
} while (0) |
|||
|
|||
#define HASH_BLOOM_BITSET(bv,idx) (bv[(idx)/8] |= (1U << ((idx)%8))) |
|||
#define HASH_BLOOM_BITTEST(bv,idx) (bv[(idx)/8] & (1U << ((idx)%8))) |
|||
|
|||
#define HASH_BLOOM_ADD(tbl,hashv) \ |
|||
HASH_BLOOM_BITSET((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1))) |
|||
|
|||
#define HASH_BLOOM_TEST(tbl,hashv) \ |
|||
HASH_BLOOM_BITTEST((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1))) |
|||
|
|||
#else |
|||
#define HASH_BLOOM_MAKE(tbl) |
|||
#define HASH_BLOOM_FREE(tbl) |
|||
#define HASH_BLOOM_ADD(tbl,hashv) |
|||
#define HASH_BLOOM_TEST(tbl,hashv) (1) |
|||
#define HASH_BLOOM_BYTELEN 0 |
|||
#endif |
|||
|
|||
#define HASH_MAKE_TABLE(hh,head) \ |
|||
do { \ |
|||
(head)->hh.tbl = (UT_hash_table*)uthash_malloc( \ |
|||
sizeof(UT_hash_table)); \ |
|||
if (!((head)->hh.tbl)) { uthash_fatal( "out of memory"); } \ |
|||
memset((head)->hh.tbl, 0, sizeof(UT_hash_table)); \ |
|||
(head)->hh.tbl->tail = &((head)->hh); \ |
|||
(head)->hh.tbl->num_buckets = HASH_INITIAL_NUM_BUCKETS; \ |
|||
(head)->hh.tbl->log2_num_buckets = HASH_INITIAL_NUM_BUCKETS_LOG2; \ |
|||
(head)->hh.tbl->hho = (char*)(&(head)->hh) - (char*)(head); \ |
|||
(head)->hh.tbl->buckets = (UT_hash_bucket*)uthash_malloc( \ |
|||
HASH_INITIAL_NUM_BUCKETS*sizeof(struct UT_hash_bucket)); \ |
|||
if (! (head)->hh.tbl->buckets) { uthash_fatal( "out of memory"); } \ |
|||
memset((head)->hh.tbl->buckets, 0, \ |
|||
HASH_INITIAL_NUM_BUCKETS*sizeof(struct UT_hash_bucket)); \ |
|||
HASH_BLOOM_MAKE((head)->hh.tbl); \ |
|||
(head)->hh.tbl->signature = HASH_SIGNATURE; \ |
|||
} while(0) |
|||
|
|||
#define HASH_ADD(hh,head,fieldname,keylen_in,add) \ |
|||
HASH_ADD_KEYPTR(hh,head,&((add)->fieldname),keylen_in,add) |
|||
|
|||
#define HASH_REPLACE(hh,head,fieldname,keylen_in,add,replaced) \ |
|||
do { \ |
|||
replaced=NULL; \ |
|||
HASH_FIND(hh,head,&((add)->fieldname),keylen_in,replaced); \ |
|||
if (replaced!=NULL) { \ |
|||
HASH_DELETE(hh,head,replaced); \ |
|||
}; \ |
|||
HASH_ADD(hh,head,fieldname,keylen_in,add); \ |
|||
} while(0) |
|||
|
|||
#define HASH_ADD_KEYPTR(hh,head,keyptr,keylen_in,add) \ |
|||
do { \ |
|||
unsigned _ha_bkt; \ |
|||
(add)->hh.next = NULL; \ |
|||
(add)->hh.key = (char*)keyptr; \ |
|||
(add)->hh.keylen = (unsigned)keylen_in; \ |
|||
if (!(head)) { \ |
|||
head = (add); \ |
|||
(head)->hh.prev = NULL; \ |
|||
HASH_MAKE_TABLE(hh,head); \ |
|||
} else { \ |
|||
(head)->hh.tbl->tail->next = (add); \ |
|||
(add)->hh.prev = ELMT_FROM_HH((head)->hh.tbl, (head)->hh.tbl->tail); \ |
|||
(head)->hh.tbl->tail = &((add)->hh); \ |
|||
} \ |
|||
(head)->hh.tbl->num_items++; \ |
|||
(add)->hh.tbl = (head)->hh.tbl; \ |
|||
HASH_FCN(keyptr,keylen_in, (head)->hh.tbl->num_buckets, \ |
|||
(add)->hh.hashv, _ha_bkt); \ |
|||
HASH_ADD_TO_BKT((head)->hh.tbl->buckets[_ha_bkt],&(add)->hh); \ |
|||
HASH_BLOOM_ADD((head)->hh.tbl,(add)->hh.hashv); \ |
|||
HASH_EMIT_KEY(hh,head,keyptr,keylen_in); \ |
|||
HASH_FSCK(hh,head); \ |
|||
} while(0) |
|||
|
|||
#define HASH_TO_BKT( hashv, num_bkts, bkt ) \ |
|||
do { \ |
|||
bkt = ((hashv) & ((num_bkts) - 1)); \ |
|||
} while(0) |
|||
|
|||
/* delete "delptr" from the hash table. |
|||
* "the usual" patch-up process for the app-order doubly-linked-list. |
|||
* The use of _hd_hh_del below deserves special explanation. |
|||
* These used to be expressed using (delptr) but that led to a bug |
|||
* if someone used the same symbol for the head and deletee, like |
|||
* HASH_DELETE(hh,users,users); |
|||
* We want that to work, but by changing the head (users) below |
|||
* we were forfeiting our ability to further refer to the deletee (users) |
|||
* in the patch-up process. Solution: use scratch space to |
|||
* copy the deletee pointer, then the latter references are via that |
|||
* scratch pointer rather than through the repointed (users) symbol. |
|||
*/ |
|||
#define HASH_DELETE(hh,head,delptr) \ |
|||
do { \ |
|||
unsigned _hd_bkt; \ |
|||
struct UT_hash_handle *_hd_hh_del; \ |
|||
if ( ((delptr)->hh.prev == NULL) && ((delptr)->hh.next == NULL) ) { \ |
|||
uthash_free((head)->hh.tbl->buckets, \ |
|||
(head)->hh.tbl->num_buckets*sizeof(struct UT_hash_bucket) ); \ |
|||
HASH_BLOOM_FREE((head)->hh.tbl); \ |
|||
uthash_free((head)->hh.tbl, sizeof(UT_hash_table)); \ |
|||
head = NULL; \ |
|||
} else { \ |
|||
_hd_hh_del = &((delptr)->hh); \ |
|||
if ((delptr) == ELMT_FROM_HH((head)->hh.tbl,(head)->hh.tbl->tail)) { \ |
|||
(head)->hh.tbl->tail = \ |
|||
(UT_hash_handle*)((ptrdiff_t)((delptr)->hh.prev) + \ |
|||
(head)->hh.tbl->hho); \ |
|||
} \ |
|||
if ((delptr)->hh.prev) { \ |
|||
((UT_hash_handle*)((ptrdiff_t)((delptr)->hh.prev) + \ |
|||
(head)->hh.tbl->hho))->next = (delptr)->hh.next; \ |
|||
} else { \ |
|||
DECLTYPE_ASSIGN(head,(delptr)->hh.next); \ |
|||
} \ |
|||
if (_hd_hh_del->next) { \ |
|||
((UT_hash_handle*)((ptrdiff_t)_hd_hh_del->next + \ |
|||
(head)->hh.tbl->hho))->prev = \ |
|||
_hd_hh_del->prev; \ |
|||
} \ |
|||
HASH_TO_BKT( _hd_hh_del->hashv, (head)->hh.tbl->num_buckets, _hd_bkt); \ |
|||
HASH_DEL_IN_BKT(hh,(head)->hh.tbl->buckets[_hd_bkt], _hd_hh_del); \ |
|||
(head)->hh.tbl->num_items--; \ |
|||
} \ |
|||
HASH_FSCK(hh,head); \ |
|||
} while (0) |
|||
|
|||
|
|||
/* convenience forms of HASH_FIND/HASH_ADD/HASH_DEL */ |
|||
#define HASH_FIND_STR(head,findstr,out) \ |
|||
HASH_FIND(hh,head,findstr,strlen(findstr),out) |
|||
#define HASH_ADD_STR(head,strfield,add) \ |
|||
HASH_ADD(hh,head,strfield,strlen(add->strfield),add) |
|||
#define HASH_REPLACE_STR(head,strfield,add,replaced) \ |
|||
HASH_REPLACE(hh,head,strfield,strlen(add->strfield),add,replaced) |
|||
#define HASH_FIND_INT(head,findint,out) \ |
|||
HASH_FIND(hh,head,findint,sizeof(int),out) |
|||
#define HASH_ADD_INT(head,intfield,add) \ |
|||
HASH_ADD(hh,head,intfield,sizeof(int),add) |
|||
#define HASH_REPLACE_INT(head,intfield,add,replaced) \ |
|||
HASH_REPLACE(hh,head,intfield,sizeof(int),add,replaced) |
|||
#define HASH_FIND_PTR(head,findptr,out) \ |
|||
HASH_FIND(hh,head,findptr,sizeof(void *),out) |
|||
#define HASH_ADD_PTR(head,ptrfield,add) \ |
|||
HASH_ADD(hh,head,ptrfield,sizeof(void *),add) |
|||
#define HASH_REPLACE_PTR(head,ptrfield,add) \ |
|||
HASH_REPLACE(hh,head,ptrfield,sizeof(void *),add,replaced) |
|||
#define HASH_DEL(head,delptr) \ |
|||
HASH_DELETE(hh,head,delptr) |
|||
|
|||
/* HASH_FSCK checks hash integrity on every add/delete when HASH_DEBUG is defined. |
|||
* This is for uthash developer only; it compiles away if HASH_DEBUG isn't defined. |
|||
*/ |
|||
#ifdef HASH_DEBUG |
|||
#define HASH_OOPS(...) do { fprintf(stderr,__VA_ARGS__); exit(-1); } while (0) |
|||
#define HASH_FSCK(hh,head) \ |
|||
do { \ |
|||
unsigned _bkt_i; \ |
|||
unsigned _count, _bkt_count; \ |
|||
char *_prev; \ |
|||
struct UT_hash_handle *_thh; \ |
|||
if (head) { \ |
|||
_count = 0; \ |
|||
for( _bkt_i = 0; _bkt_i < (head)->hh.tbl->num_buckets; _bkt_i++) { \ |
|||
_bkt_count = 0; \ |
|||
_thh = (head)->hh.tbl->buckets[_bkt_i].hh_head; \ |
|||
_prev = NULL; \ |
|||
while (_thh) { \ |
|||
if (_prev != (char*)(_thh->hh_prev)) { \ |
|||
HASH_OOPS("invalid hh_prev %p, actual %p\n", \ |
|||
_thh->hh_prev, _prev ); \ |
|||
} \ |
|||
_bkt_count++; \ |
|||
_prev = (char*)(_thh); \ |
|||
_thh = _thh->hh_next; \ |
|||
} \ |
|||
_count += _bkt_count; \ |
|||
if ((head)->hh.tbl->buckets[_bkt_i].count != _bkt_count) { \ |
|||
HASH_OOPS("invalid bucket count %d, actual %d\n", \ |
|||
(head)->hh.tbl->buckets[_bkt_i].count, _bkt_count); \ |
|||
} \ |
|||
} \ |
|||
if (_count != (head)->hh.tbl->num_items) { \ |
|||
HASH_OOPS("invalid hh item count %d, actual %d\n", \ |
|||
(head)->hh.tbl->num_items, _count ); \ |
|||
} \ |
|||
/* traverse hh in app order; check next/prev integrity, count */ \ |
|||
_count = 0; \ |
|||
_prev = NULL; \ |
|||
_thh = &(head)->hh; \ |
|||
while (_thh) { \ |
|||
_count++; \ |
|||
if (_prev !=(char*)(_thh->prev)) { \ |
|||
HASH_OOPS("invalid prev %p, actual %p\n", \ |
|||
_thh->prev, _prev ); \ |
|||
} \ |
|||
_prev = (char*)ELMT_FROM_HH((head)->hh.tbl, _thh); \ |
|||
_thh = ( _thh->next ? (UT_hash_handle*)((char*)(_thh->next) + \ |
|||
(head)->hh.tbl->hho) : NULL ); \ |
|||
} \ |
|||
if (_count != (head)->hh.tbl->num_items) { \ |
|||
HASH_OOPS("invalid app item count %d, actual %d\n", \ |
|||
(head)->hh.tbl->num_items, _count ); \ |
|||
} \ |
|||
} \ |
|||
} while (0) |
|||
#else |
|||
#define HASH_FSCK(hh,head) |
|||
#endif |
|||
|
|||
/* When compiled with -DHASH_EMIT_KEYS, length-prefixed keys are emitted to |
|||
* the descriptor to which this macro is defined for tuning the hash function. |
|||
* The app can #include <unistd.h> to get the prototype for write(2). */ |
|||
#ifdef HASH_EMIT_KEYS |
|||
#define HASH_EMIT_KEY(hh,head,keyptr,fieldlen) \ |
|||
do { \ |
|||
unsigned _klen = fieldlen; \ |
|||
write(HASH_EMIT_KEYS, &_klen, sizeof(_klen)); \ |
|||
write(HASH_EMIT_KEYS, keyptr, fieldlen); \ |
|||
} while (0) |
|||
#else |
|||
#define HASH_EMIT_KEY(hh,head,keyptr,fieldlen) |
|||
#endif |
|||
|
|||
/* default to Jenkin's hash unless overridden e.g. DHASH_FUNCTION=HASH_SAX */ |
|||
#ifdef HASH_FUNCTION |
|||
#define HASH_FCN HASH_FUNCTION |
|||
#else |
|||
#define HASH_FCN HASH_JEN |
|||
#endif |
|||
|
|||
/* The Bernstein hash function, used in Perl prior to v5.6 */ |
|||
#define HASH_BER(key,keylen,num_bkts,hashv,bkt) \ |
|||
do { \ |
|||
unsigned _hb_keylen=keylen; \ |
|||
char *_hb_key=(char*)(key); \ |
|||
(hashv) = 0; \ |
|||
while (_hb_keylen--) { (hashv) = ((hashv) * 33) + *_hb_key++; } \ |
|||
bkt = (hashv) & (num_bkts-1); \ |
|||
} while (0) |
|||
|
|||
|
|||
/* SAX/FNV/OAT/JEN hash functions are macro variants of those listed at |
|||
* http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx */ |
|||
#define HASH_SAX(key,keylen,num_bkts,hashv,bkt) \ |
|||
do { \ |
|||
unsigned _sx_i; \ |
|||
char *_hs_key=(char*)(key); \ |
|||
hashv = 0; \ |
|||
for(_sx_i=0; _sx_i < keylen; _sx_i++) \ |
|||
hashv ^= (hashv << 5) + (hashv >> 2) + _hs_key[_sx_i]; \ |
|||
bkt = hashv & (num_bkts-1); \ |
|||
} while (0) |
|||
|
|||
#define HASH_FNV(key,keylen,num_bkts,hashv,bkt) \ |
|||
do { \ |
|||
unsigned _fn_i; \ |
|||
char *_hf_key=(char*)(key); \ |
|||
hashv = 2166136261UL; \ |
|||
for(_fn_i=0; _fn_i < keylen; _fn_i++) \ |
|||
hashv = (hashv * 16777619) ^ _hf_key[_fn_i]; \ |
|||
bkt = hashv & (num_bkts-1); \ |
|||
} while(0) |
|||
|
|||
#define HASH_OAT(key,keylen,num_bkts,hashv,bkt) \ |
|||
do { \ |
|||
unsigned _ho_i; \ |
|||
char *_ho_key=(char*)(key); \ |
|||
hashv = 0; \ |
|||
for(_ho_i=0; _ho_i < keylen; _ho_i++) { \ |
|||
hashv += _ho_key[_ho_i]; \ |
|||
hashv += (hashv << 10); \ |
|||
hashv ^= (hashv >> 6); \ |
|||
} \ |
|||
hashv += (hashv << 3); \ |
|||
hashv ^= (hashv >> 11); \ |
|||
hashv += (hashv << 15); \ |
|||
bkt = hashv & (num_bkts-1); \ |
|||
} while(0) |
|||
|
|||
#define HASH_JEN_MIX(a,b,c) \ |
|||
do { \ |
|||
a -= b; a -= c; a ^= ( c >> 13 ); \ |
|||
b -= c; b -= a; b ^= ( a << 8 ); \ |
|||
c -= a; c -= b; c ^= ( b >> 13 ); \ |
|||
a -= b; a -= c; a ^= ( c >> 12 ); \ |
|||
b -= c; b -= a; b ^= ( a << 16 ); \ |
|||
c -= a; c -= b; c ^= ( b >> 5 ); \ |
|||
a -= b; a -= c; a ^= ( c >> 3 ); \ |
|||
b -= c; b -= a; b ^= ( a << 10 ); \ |
|||
c -= a; c -= b; c ^= ( b >> 15 ); \ |
|||
} while (0) |
|||
|
|||
#define HASH_JEN(key,keylen,num_bkts,hashv,bkt) \ |
|||
do { \ |
|||
unsigned _hj_i,_hj_j,_hj_k; \ |
|||
unsigned char *_hj_key=(unsigned char*)(key); \ |
|||
hashv = 0xfeedbeef; \ |
|||
_hj_i = _hj_j = 0x9e3779b9; \ |
|||
_hj_k = (unsigned)keylen; \ |
|||
while (_hj_k >= 12) { \ |
|||
_hj_i += (_hj_key[0] + ( (unsigned)_hj_key[1] << 8 ) \ |
|||
+ ( (unsigned)_hj_key[2] << 16 ) \ |
|||
+ ( (unsigned)_hj_key[3] << 24 ) ); \ |
|||
_hj_j += (_hj_key[4] + ( (unsigned)_hj_key[5] << 8 ) \ |
|||
+ ( (unsigned)_hj_key[6] << 16 ) \ |
|||
+ ( (unsigned)_hj_key[7] << 24 ) ); \ |
|||
hashv += (_hj_key[8] + ( (unsigned)_hj_key[9] << 8 ) \ |
|||
+ ( (unsigned)_hj_key[10] << 16 ) \ |
|||
+ ( (unsigned)_hj_key[11] << 24 ) ); \ |
|||
\ |
|||
HASH_JEN_MIX(_hj_i, _hj_j, hashv); \ |
|||
\ |
|||
_hj_key += 12; \ |
|||
_hj_k -= 12; \ |
|||
} \ |
|||
hashv += keylen; \ |
|||
switch ( _hj_k ) { \ |
|||
case 11: hashv += ( (unsigned)_hj_key[10] << 24 ); \ |
|||
case 10: hashv += ( (unsigned)_hj_key[9] << 16 ); \ |
|||
case 9: hashv += ( (unsigned)_hj_key[8] << 8 ); \ |
|||
case 8: _hj_j += ( (unsigned)_hj_key[7] << 24 ); \ |
|||
case 7: _hj_j += ( (unsigned)_hj_key[6] << 16 ); \ |
|||
case 6: _hj_j += ( (unsigned)_hj_key[5] << 8 ); \ |
|||
case 5: _hj_j += _hj_key[4]; \ |
|||
case 4: _hj_i += ( (unsigned)_hj_key[3] << 24 ); \ |
|||
case 3: _hj_i += ( (unsigned)_hj_key[2] << 16 ); \ |
|||
case 2: _hj_i += ( (unsigned)_hj_key[1] << 8 ); \ |
|||
case 1: _hj_i += _hj_key[0]; \ |
|||
} \ |
|||
HASH_JEN_MIX(_hj_i, _hj_j, hashv); \ |
|||
bkt = hashv & (num_bkts-1); \ |
|||
} while(0) |
|||
|
|||
/* The Paul Hsieh hash function */ |
|||
#undef get16bits |
|||
#if (defined(__GNUC__) && defined(__i386__)) || defined(__WATCOMC__) \ |
|||
|| defined(_MSC_VER) || defined (__BORLANDC__) || defined (__TURBOC__) |
|||
#define get16bits(d) (*((const uint16_t *) (d))) |
|||
#endif |
|||
|
|||
#if !defined (get16bits) |
|||
#define get16bits(d) ((((uint32_t)(((const uint8_t *)(d))[1])) << 8) \ |
|||
+(uint32_t)(((const uint8_t *)(d))[0]) ) |
|||
#endif |
|||
#define HASH_SFH(key,keylen,num_bkts,hashv,bkt) \ |
|||
do { \ |
|||
unsigned char *_sfh_key=(unsigned char*)(key); \ |
|||
uint32_t _sfh_tmp, _sfh_len = keylen; \ |
|||
\ |
|||
int _sfh_rem = _sfh_len & 3; \ |
|||
_sfh_len >>= 2; \ |
|||
hashv = 0xcafebabe; \ |
|||
\ |
|||
/* Main loop */ \ |
|||
for (;_sfh_len > 0; _sfh_len--) { \ |
|||
hashv += get16bits (_sfh_key); \ |
|||
_sfh_tmp = (uint32_t)(get16bits (_sfh_key+2)) << 11 ^ hashv; \ |
|||
hashv = (hashv << 16) ^ _sfh_tmp; \ |
|||
_sfh_key += 2*sizeof (uint16_t); \ |
|||
hashv += hashv >> 11; \ |
|||
} \ |
|||
\ |
|||
/* Handle end cases */ \ |
|||
switch (_sfh_rem) { \ |
|||
case 3: hashv += get16bits (_sfh_key); \ |
|||
hashv ^= hashv << 16; \ |
|||
hashv ^= (uint32_t)(_sfh_key[sizeof (uint16_t)] << 18); \ |
|||
hashv += hashv >> 11; \ |
|||
break; \ |
|||
case 2: hashv += get16bits (_sfh_key); \ |
|||
hashv ^= hashv << 11; \ |
|||
hashv += hashv >> 17; \ |
|||
break; \ |
|||
case 1: hashv += *_sfh_key; \ |
|||
hashv ^= hashv << 10; \ |
|||
hashv += hashv >> 1; \ |
|||
} \ |
|||
\ |
|||
/* Force "avalanching" of final 127 bits */ \ |
|||
hashv ^= hashv << 3; \ |
|||
hashv += hashv >> 5; \ |
|||
hashv ^= hashv << 4; \ |
|||
hashv += hashv >> 17; \ |
|||
hashv ^= hashv << 25; \ |
|||
hashv += hashv >> 6; \ |
|||
bkt = hashv & (num_bkts-1); \ |
|||
} while(0) |
|||
|
|||
#ifdef HASH_USING_NO_STRICT_ALIASING |
|||
/* The MurmurHash exploits some CPU's (x86,x86_64) tolerance for unaligned reads. |
|||
* For other types of CPU's (e.g. Sparc) an unaligned read causes a bus error. |
|||
* MurmurHash uses the faster approach only on CPU's where we know it's safe. |
|||
* |
|||
* Note the preprocessor built-in defines can be emitted using: |
|||
* |
|||
* gcc -m64 -dM -E - < /dev/null (on gcc) |
|||
* cc -## a.c (where a.c is a simple test file) (Sun Studio) |
|||
*/ |
|||
#if (defined(__i386__) || defined(__x86_64__) || defined(_M_IX86)) |
|||
#define MUR_GETBLOCK(p,i) p[i] |
|||
#else /* non intel */ |
|||
#define MUR_PLUS0_ALIGNED(p) (((unsigned long)p & 0x3) == 0) |
|||
#define MUR_PLUS1_ALIGNED(p) (((unsigned long)p & 0x3) == 1) |
|||
#define MUR_PLUS2_ALIGNED(p) (((unsigned long)p & 0x3) == 2) |
|||
#define MUR_PLUS3_ALIGNED(p) (((unsigned long)p & 0x3) == 3) |
|||
#define WP(p) ((uint32_t*)((unsigned long)(p) & ~3UL)) |
|||
#if (defined(__BIG_ENDIAN__) || defined(SPARC) || defined(__ppc__) || defined(__ppc64__)) |
|||
#define MUR_THREE_ONE(p) ((((*WP(p))&0x00ffffff) << 8) | (((*(WP(p)+1))&0xff000000) >> 24)) |
|||
#define MUR_TWO_TWO(p) ((((*WP(p))&0x0000ffff) <<16) | (((*(WP(p)+1))&0xffff0000) >> 16)) |
|||
#define MUR_ONE_THREE(p) ((((*WP(p))&0x000000ff) <<24) | (((*(WP(p)+1))&0xffffff00) >> 8)) |
|||
#else /* assume little endian non-intel */ |
|||
#define MUR_THREE_ONE(p) ((((*WP(p))&0xffffff00) >> 8) | (((*(WP(p)+1))&0x000000ff) << 24)) |
|||
#define MUR_TWO_TWO(p) ((((*WP(p))&0xffff0000) >>16) | (((*(WP(p)+1))&0x0000ffff) << 16)) |
|||
#define MUR_ONE_THREE(p) ((((*WP(p))&0xff000000) >>24) | (((*(WP(p)+1))&0x00ffffff) << 8)) |
|||
#endif |
|||
#define MUR_GETBLOCK(p,i) (MUR_PLUS0_ALIGNED(p) ? ((p)[i]) : \ |
|||
(MUR_PLUS1_ALIGNED(p) ? MUR_THREE_ONE(p) : \ |
|||
(MUR_PLUS2_ALIGNED(p) ? MUR_TWO_TWO(p) : \ |
|||
MUR_ONE_THREE(p)))) |
|||
#endif |
|||
#define MUR_ROTL32(x,r) (((x) << (r)) | ((x) >> (32 - (r)))) |
|||
#define MUR_FMIX(_h) \ |
|||
do { \ |
|||
_h ^= _h >> 16; \ |
|||
_h *= 0x85ebca6b; \ |
|||
_h ^= _h >> 13; \ |
|||
_h *= 0xc2b2ae35l; \ |
|||
_h ^= _h >> 16; \ |
|||
} while(0) |
|||
|
|||
#define HASH_MUR(key,keylen,num_bkts,hashv,bkt) \ |
|||
do { \ |
|||
const uint8_t *_mur_data = (const uint8_t*)(key); \ |
|||
const int _mur_nblocks = (keylen) / 4; \ |
|||
uint32_t _mur_h1 = 0xf88D5353; \ |
|||
uint32_t _mur_c1 = 0xcc9e2d51; \ |
|||
uint32_t _mur_c2 = 0x1b873593; \ |
|||
uint32_t _mur_k1 = 0; \ |
|||
const uint8_t *_mur_tail; \ |
|||
const uint32_t *_mur_blocks = (const uint32_t*)(_mur_data+_mur_nblocks*4); \ |
|||
int _mur_i; \ |
|||
for(_mur_i = -_mur_nblocks; _mur_i; _mur_i++) { \ |
|||
_mur_k1 = MUR_GETBLOCK(_mur_blocks,_mur_i); \ |
|||
_mur_k1 *= _mur_c1; \ |
|||
_mur_k1 = MUR_ROTL32(_mur_k1,15); \ |
|||
_mur_k1 *= _mur_c2; \ |
|||
\ |
|||
_mur_h1 ^= _mur_k1; \ |
|||
_mur_h1 = MUR_ROTL32(_mur_h1,13); \ |
|||
_mur_h1 = _mur_h1*5+0xe6546b64; \ |
|||
} \ |
|||
_mur_tail = (const uint8_t*)(_mur_data + _mur_nblocks*4); \ |
|||
_mur_k1=0; \ |
|||
switch((keylen) & 3) { \ |
|||
case 3: _mur_k1 ^= _mur_tail[2] << 16; \ |
|||
case 2: _mur_k1 ^= _mur_tail[1] << 8; \ |
|||
case 1: _mur_k1 ^= _mur_tail[0]; \ |
|||
_mur_k1 *= _mur_c1; \ |
|||
_mur_k1 = MUR_ROTL32(_mur_k1,15); \ |
|||
_mur_k1 *= _mur_c2; \ |
|||
_mur_h1 ^= _mur_k1; \ |
|||
} \ |
|||
_mur_h1 ^= (keylen); \ |
|||
MUR_FMIX(_mur_h1); \ |
|||
hashv = _mur_h1; \ |
|||
bkt = hashv & (num_bkts-1); \ |
|||
} while(0) |
|||
#endif /* HASH_USING_NO_STRICT_ALIASING */ |
|||
|
|||
/* key comparison function; return 0 if keys equal */ |
|||
#define HASH_KEYCMP(a,b,len) memcmp(a,b,len) |
|||
|
|||
/* iterate over items in a known bucket to find desired item */ |
|||
#define HASH_FIND_IN_BKT(tbl,hh,head,keyptr,keylen_in,out) \ |
|||
do { \ |
|||
if (head.hh_head) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,head.hh_head)); \ |
|||
else out=NULL; \ |
|||
while (out) { \ |
|||
if ((out)->hh.keylen == keylen_in) { \ |
|||
if ((HASH_KEYCMP((out)->hh.key,keyptr,keylen_in)) == 0) break; \ |
|||
} \ |
|||
if ((out)->hh.hh_next) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,(out)->hh.hh_next)); \ |
|||
else out = NULL; \ |
|||
} \ |
|||
} while(0) |
|||
|
|||
/* add an item to a bucket */ |
|||
#define HASH_ADD_TO_BKT(head,addhh) \ |
|||
do { \ |
|||
head.count++; \ |
|||
(addhh)->hh_next = head.hh_head; \ |
|||
(addhh)->hh_prev = NULL; \ |
|||
if (head.hh_head) { (head).hh_head->hh_prev = (addhh); } \ |
|||
(head).hh_head=addhh; \ |
|||
if (head.count >= ((head.expand_mult+1) * HASH_BKT_CAPACITY_THRESH) \ |
|||
&& (addhh)->tbl->noexpand != 1) { \ |
|||
HASH_EXPAND_BUCKETS((addhh)->tbl); \ |
|||
} \ |
|||
} while(0) |
|||
|
|||
/* remove an item from a given bucket */ |
|||
#define HASH_DEL_IN_BKT(hh,head,hh_del) \ |
|||
(head).count--; \ |
|||
if ((head).hh_head == hh_del) { \ |
|||
(head).hh_head = hh_del->hh_next; \ |
|||
} \ |
|||
if (hh_del->hh_prev) { \ |
|||
hh_del->hh_prev->hh_next = hh_del->hh_next; \ |
|||
} \ |
|||
if (hh_del->hh_next) { \ |
|||
hh_del->hh_next->hh_prev = hh_del->hh_prev; \ |
|||
} |
|||
|
|||
/* Bucket expansion has the effect of doubling the number of buckets |
|||
* and redistributing the items into the new buckets. Ideally the |
|||
* items will distribute more or less evenly into the new buckets |
|||
* (the extent to which this is true is a measure of the quality of |
|||
* the hash function as it applies to the key domain). |
|||
* |
|||
* With the items distributed into more buckets, the chain length |
|||
* (item count) in each bucket is reduced. Thus by expanding buckets |
|||
* the hash keeps a bound on the chain length. This bounded chain |
|||
* length is the essence of how a hash provides constant time lookup. |
|||
* |
|||
* The calculation of tbl->ideal_chain_maxlen below deserves some |
|||
* explanation. First, keep in mind that we're calculating the ideal |
|||
* maximum chain length based on the *new* (doubled) bucket count. |
|||
* In fractions this is just n/b (n=number of items,b=new num buckets). |
|||
* Since the ideal chain length is an integer, we want to calculate |
|||
* ceil(n/b). We don't depend on floating point arithmetic in this |
|||
* hash, so to calculate ceil(n/b) with integers we could write |
|||
* |
|||
* ceil(n/b) = (n/b) + ((n%b)?1:0) |
|||
* |
|||
* and in fact a previous version of this hash did just that. |
|||
* But now we have improved things a bit by recognizing that b is |
|||
* always a power of two. We keep its base 2 log handy (call it lb), |
|||
* so now we can write this with a bit shift and logical AND: |
|||
* |
|||
* ceil(n/b) = (n>>lb) + ( (n & (b-1)) ? 1:0) |
|||
* |
|||
*/ |
|||
#define HASH_EXPAND_BUCKETS(tbl) \ |
|||
do { \ |
|||
unsigned _he_bkt; \ |
|||
unsigned _he_bkt_i; \ |
|||
struct UT_hash_handle *_he_thh, *_he_hh_nxt; \ |
|||
UT_hash_bucket *_he_new_buckets, *_he_newbkt; \ |
|||
_he_new_buckets = (UT_hash_bucket*)uthash_malloc( \ |
|||
2 * tbl->num_buckets * sizeof(struct UT_hash_bucket)); \ |
|||
if (!_he_new_buckets) { uthash_fatal( "out of memory"); } \ |
|||
memset(_he_new_buckets, 0, \ |
|||
2 * tbl->num_buckets * sizeof(struct UT_hash_bucket)); \ |
|||
tbl->ideal_chain_maxlen = \ |
|||
(tbl->num_items >> (tbl->log2_num_buckets+1)) + \ |
|||
((tbl->num_items & ((tbl->num_buckets*2)-1)) ? 1 : 0); \ |
|||
tbl->nonideal_items = 0; \ |
|||
for(_he_bkt_i = 0; _he_bkt_i < tbl->num_buckets; _he_bkt_i++) \ |
|||
{ \ |
|||
_he_thh = tbl->buckets[ _he_bkt_i ].hh_head; \ |
|||
while (_he_thh) { \ |
|||
_he_hh_nxt = _he_thh->hh_next; \ |
|||
HASH_TO_BKT( _he_thh->hashv, tbl->num_buckets*2, _he_bkt); \ |
|||
_he_newbkt = &(_he_new_buckets[ _he_bkt ]); \ |
|||
if (++(_he_newbkt->count) > tbl->ideal_chain_maxlen) { \ |
|||
tbl->nonideal_items++; \ |
|||
_he_newbkt->expand_mult = _he_newbkt->count / \ |
|||
tbl->ideal_chain_maxlen; \ |
|||
} \ |
|||
_he_thh->hh_prev = NULL; \ |
|||
_he_thh->hh_next = _he_newbkt->hh_head; \ |
|||
if (_he_newbkt->hh_head) _he_newbkt->hh_head->hh_prev = \ |
|||
_he_thh; \ |
|||
_he_newbkt->hh_head = _he_thh; \ |
|||
_he_thh = _he_hh_nxt; \ |
|||
} \ |
|||
} \ |
|||
uthash_free( tbl->buckets, tbl->num_buckets*sizeof(struct UT_hash_bucket) ); \ |
|||
tbl->num_buckets *= 2; \ |
|||
tbl->log2_num_buckets++; \ |
|||
tbl->buckets = _he_new_buckets; \ |
|||
tbl->ineff_expands = (tbl->nonideal_items > (tbl->num_items >> 1)) ? \ |
|||
(tbl->ineff_expands+1) : 0; \ |
|||
if (tbl->ineff_expands > 1) { \ |
|||
tbl->noexpand=1; \ |
|||
uthash_noexpand_fyi(tbl); \ |
|||
} \ |
|||
uthash_expand_fyi(tbl); \ |
|||
} while(0) |
|||
|
|||
|
|||
/* This is an adaptation of Simon Tatham's O(n log(n)) mergesort */ |
|||
/* Note that HASH_SORT assumes the hash handle name to be hh. |
|||
* HASH_SRT was added to allow the hash handle name to be passed in. */ |
|||
#define HASH_SORT(head,cmpfcn) HASH_SRT(hh,head,cmpfcn) |
|||
#define HASH_SRT(hh,head,cmpfcn) \ |
|||
do { \ |
|||
unsigned _hs_i; \ |
|||
unsigned _hs_looping,_hs_nmerges,_hs_insize,_hs_psize,_hs_qsize; \ |
|||
struct UT_hash_handle *_hs_p, *_hs_q, *_hs_e, *_hs_list, *_hs_tail; \ |
|||
if (head) { \ |
|||
_hs_insize = 1; \ |
|||
_hs_looping = 1; \ |
|||
_hs_list = &((head)->hh); \ |
|||
while (_hs_looping) { \ |
|||
_hs_p = _hs_list; \ |
|||
_hs_list = NULL; \ |
|||
_hs_tail = NULL; \ |
|||
_hs_nmerges = 0; \ |
|||
while (_hs_p) { \ |
|||
_hs_nmerges++; \ |
|||
_hs_q = _hs_p; \ |
|||
_hs_psize = 0; \ |
|||
for ( _hs_i = 0; _hs_i < _hs_insize; _hs_i++ ) { \ |
|||
_hs_psize++; \ |
|||
_hs_q = (UT_hash_handle*)((_hs_q->next) ? \ |
|||
((void*)((char*)(_hs_q->next) + \ |
|||
(head)->hh.tbl->hho)) : NULL); \ |
|||
if (! (_hs_q) ) break; \ |
|||
} \ |
|||
_hs_qsize = _hs_insize; \ |
|||
while ((_hs_psize > 0) || ((_hs_qsize > 0) && _hs_q )) { \ |
|||
if (_hs_psize == 0) { \ |
|||
_hs_e = _hs_q; \ |
|||
_hs_q = (UT_hash_handle*)((_hs_q->next) ? \ |
|||
((void*)((char*)(_hs_q->next) + \ |
|||
(head)->hh.tbl->hho)) : NULL); \ |
|||
_hs_qsize--; \ |
|||
} else if ( (_hs_qsize == 0) || !(_hs_q) ) { \ |
|||
_hs_e = _hs_p; \ |
|||
if (_hs_p){ \ |
|||
_hs_p = (UT_hash_handle*)((_hs_p->next) ? \ |
|||
((void*)((char*)(_hs_p->next) + \ |
|||
(head)->hh.tbl->hho)) : NULL); \ |
|||
} \ |
|||
_hs_psize--; \ |
|||
} else if (( \ |
|||
cmpfcn(DECLTYPE(head)(ELMT_FROM_HH((head)->hh.tbl,_hs_p)), \ |
|||
DECLTYPE(head)(ELMT_FROM_HH((head)->hh.tbl,_hs_q))) \ |
|||
) <= 0) { \ |
|||
_hs_e = _hs_p; \ |
|||
if (_hs_p){ \ |
|||
_hs_p = (UT_hash_handle*)((_hs_p->next) ? \ |
|||
((void*)((char*)(_hs_p->next) + \ |
|||
(head)->hh.tbl->hho)) : NULL); \ |
|||
} \ |
|||
_hs_psize--; \ |
|||
} else { \ |
|||
_hs_e = _hs_q; \ |
|||
_hs_q = (UT_hash_handle*)((_hs_q->next) ? \ |
|||
((void*)((char*)(_hs_q->next) + \ |
|||
(head)->hh.tbl->hho)) : NULL); \ |
|||
_hs_qsize--; \ |
|||
} \ |
|||
if ( _hs_tail ) { \ |
|||
_hs_tail->next = ((_hs_e) ? \ |
|||
ELMT_FROM_HH((head)->hh.tbl,_hs_e) : NULL); \ |
|||
} else { \ |
|||
_hs_list = _hs_e; \ |
|||
} \ |
|||
if (_hs_e) { \ |
|||
_hs_e->prev = ((_hs_tail) ? \ |
|||
ELMT_FROM_HH((head)->hh.tbl,_hs_tail) : NULL); \ |
|||
} \ |
|||
_hs_tail = _hs_e; \ |
|||
} \ |
|||
_hs_p = _hs_q; \ |
|||
} \ |
|||
if (_hs_tail){ \ |
|||
_hs_tail->next = NULL; \ |
|||
} \ |
|||
if ( _hs_nmerges <= 1 ) { \ |
|||
_hs_looping=0; \ |
|||
(head)->hh.tbl->tail = _hs_tail; \ |
|||
DECLTYPE_ASSIGN(head,ELMT_FROM_HH((head)->hh.tbl, _hs_list)); \ |
|||
} \ |
|||
_hs_insize *= 2; \ |
|||
} \ |
|||
HASH_FSCK(hh,head); \ |
|||
} \ |
|||
} while (0) |
|||
|
|||
/* This function selects items from one hash into another hash. |
|||
* The end result is that the selected items have dual presence |
|||
* in both hashes. There is no copy of the items made; rather |
|||
* they are added into the new hash through a secondary hash |
|||
* hash handle that must be present in the structure. */ |
|||
#define HASH_SELECT(hh_dst, dst, hh_src, src, cond) \ |
|||
do { \ |
|||
unsigned _src_bkt, _dst_bkt; \ |
|||
void *_last_elt=NULL, *_elt; \ |
|||
UT_hash_handle *_src_hh, *_dst_hh, *_last_elt_hh=NULL; \ |
|||
ptrdiff_t _dst_hho = ((char*)(&(dst)->hh_dst) - (char*)(dst)); \ |
|||
if (src) { \ |
|||
for(_src_bkt=0; _src_bkt < (src)->hh_src.tbl->num_buckets; _src_bkt++) { \ |
|||
for(_src_hh = (src)->hh_src.tbl->buckets[_src_bkt].hh_head; \ |
|||
_src_hh; \ |
|||
_src_hh = _src_hh->hh_next) { \ |
|||
_elt = ELMT_FROM_HH((src)->hh_src.tbl, _src_hh); \ |
|||
if (cond(_elt)) { \ |
|||
_dst_hh = (UT_hash_handle*)(((char*)_elt) + _dst_hho); \ |
|||
_dst_hh->key = _src_hh->key; \ |
|||
_dst_hh->keylen = _src_hh->keylen; \ |
|||
_dst_hh->hashv = _src_hh->hashv; \ |
|||
_dst_hh->prev = _last_elt; \ |
|||
_dst_hh->next = NULL; \ |
|||
if (_last_elt_hh) { _last_elt_hh->next = _elt; } \ |
|||
if (!dst) { \ |
|||
DECLTYPE_ASSIGN(dst,_elt); \ |
|||
HASH_MAKE_TABLE(hh_dst,dst); \ |
|||
} else { \ |
|||
_dst_hh->tbl = (dst)->hh_dst.tbl; \ |
|||
} \ |
|||
HASH_TO_BKT(_dst_hh->hashv, _dst_hh->tbl->num_buckets, _dst_bkt); \ |
|||
HASH_ADD_TO_BKT(_dst_hh->tbl->buckets[_dst_bkt],_dst_hh); \ |
|||
(dst)->hh_dst.tbl->num_items++; \ |
|||
_last_elt = _elt; \ |
|||
_last_elt_hh = _dst_hh; \ |
|||
} \ |
|||
} \ |
|||
} \ |
|||
} \ |
|||
HASH_FSCK(hh_dst,dst); \ |
|||
} while (0) |
|||
|
|||
#define HASH_CLEAR(hh,head) \ |
|||
do { \ |
|||
if (head) { \ |
|||
uthash_free((head)->hh.tbl->buckets, \ |
|||
(head)->hh.tbl->num_buckets*sizeof(struct UT_hash_bucket)); \ |
|||
HASH_BLOOM_FREE((head)->hh.tbl); \ |
|||
uthash_free((head)->hh.tbl, sizeof(UT_hash_table)); \ |
|||
(head)=NULL; \ |
|||
} \ |
|||
} while(0) |
|||
|
|||
#define HASH_OVERHEAD(hh,head) \ |
|||
(size_t)((((head)->hh.tbl->num_items * sizeof(UT_hash_handle)) + \ |
|||
((head)->hh.tbl->num_buckets * sizeof(UT_hash_bucket)) + \ |
|||
(sizeof(UT_hash_table)) + \ |
|||
(HASH_BLOOM_BYTELEN))) |
|||
|
|||
#ifdef NO_DECLTYPE |
|||
#define HASH_ITER(hh,head,el,tmp) \ |
|||
for((el)=(head), (*(char**)(&(tmp)))=(char*)((head)?(head)->hh.next:NULL); \ |
|||
el; (el)=(tmp),(*(char**)(&(tmp)))=(char*)((tmp)?(tmp)->hh.next:NULL)) |
|||
#else |
|||
#define HASH_ITER(hh,head,el,tmp) \ |
|||
for((el)=(head),(tmp)=DECLTYPE(el)((head)?(head)->hh.next:NULL); \ |
|||
el; (el)=(tmp),(tmp)=DECLTYPE(el)((tmp)?(tmp)->hh.next:NULL)) |
|||
#endif |
|||
|
|||
/* obtain a count of items in the hash */ |
|||
#define HASH_COUNT(head) HASH_CNT(hh,head) |
|||
#define HASH_CNT(hh,head) ((head)?((head)->hh.tbl->num_items):0) |
|||
|
|||
typedef struct UT_hash_bucket { |
|||
struct UT_hash_handle *hh_head; |
|||
unsigned count; |
|||
|
|||
/* expand_mult is normally set to 0. In this situation, the max chain length |
|||
* threshold is enforced at its default value, HASH_BKT_CAPACITY_THRESH. (If |
|||
* the bucket's chain exceeds this length, bucket expansion is triggered). |
|||
* However, setting expand_mult to a non-zero value delays bucket expansion |
|||
* (that would be triggered by additions to this particular bucket) |
|||
* until its chain length reaches a *multiple* of HASH_BKT_CAPACITY_THRESH. |
|||
* (The multiplier is simply expand_mult+1). The whole idea of this |
|||
* multiplier is to reduce bucket expansions, since they are expensive, in |
|||
* situations where we know that a particular bucket tends to be overused. |
|||
* It is better to let its chain length grow to a longer yet-still-bounded |
|||
* value, than to do an O(n) bucket expansion too often. |
|||
*/ |
|||
unsigned expand_mult; |
|||
|
|||
} UT_hash_bucket; |
|||
|
|||
/* random signature used only to find hash tables in external analysis */ |
|||
#define HASH_SIGNATURE 0xa0111fe1 |
|||
#define HASH_BLOOM_SIGNATURE 0xb12220f2 |
|||
|
|||
typedef struct UT_hash_table { |
|||
UT_hash_bucket *buckets; |
|||
unsigned num_buckets, log2_num_buckets; |
|||
unsigned num_items; |
|||
struct UT_hash_handle *tail; /* tail hh in app order, for fast append */ |
|||
ptrdiff_t hho; /* hash handle offset (byte pos of hash handle in element */ |
|||
|
|||
/* in an ideal situation (all buckets used equally), no bucket would have |
|||
* more than ceil(#items/#buckets) items. that's the ideal chain length. */ |
|||
unsigned ideal_chain_maxlen; |
|||
|
|||
/* nonideal_items is the number of items in the hash whose chain position |
|||
* exceeds the ideal chain maxlen. these items pay the penalty for an uneven |
|||
* hash distribution; reaching them in a chain traversal takes >ideal steps */ |
|||
unsigned nonideal_items; |
|||
|
|||
/* ineffective expands occur when a bucket doubling was performed, but |
|||
* afterward, more than half the items in the hash had nonideal chain |
|||
* positions. If this happens on two consecutive expansions we inhibit any |
|||
* further expansion, as it's not helping; this happens when the hash |
|||
* function isn't a good fit for the key domain. When expansion is inhibited |
|||
* the hash will still work, albeit no longer in constant time. */ |
|||
unsigned ineff_expands, noexpand; |
|||
|
|||
uint32_t signature; /* used only to find hash tables in external analysis */ |
|||
#ifdef HASH_BLOOM |
|||
uint32_t bloom_sig; /* used only to test bloom exists in external analysis */ |
|||
uint8_t *bloom_bv; |
|||
char bloom_nbits; |
|||
#endif |
|||
|
|||
} UT_hash_table; |
|||
|
|||
typedef struct UT_hash_handle { |
|||
struct UT_hash_table *tbl; |
|||
void *prev; /* prev element in app order */ |
|||
void *next; /* next element in app order */ |
|||
struct UT_hash_handle *hh_prev; /* previous hh in bucket order */ |
|||
struct UT_hash_handle *hh_next; /* next hh in bucket order */ |
|||
void *key; /* ptr to enclosing struct's key */ |
|||
unsigned keylen; /* enclosing struct's key len */ |
|||
unsigned hashv; /* result of hash-fcn(key) */ |
|||
} UT_hash_handle; |
|||
|
|||
#endif /* UTHASH_H */ |
Write
Preview
Loading…
Cancel
Save