|
|
/*
* tunnel.c - Setup a local port forwarding through remote shadowsocks server * * Copyright (C) 2013 - 2014, Max Lv <max.c.lv@gmail.com> * * This file is part of the shadowsocks-libev. * * shadowsocks-libev is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * shadowsocks-libev is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with pdnsd; see the file COPYING. If not, see * <http://www.gnu.org/licenses/>.
*/
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <locale.h>
#include <signal.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#ifndef __MINGW32__
#include <errno.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <pthread.h>
#endif
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#if defined(HAVE_SYS_IOCTL_H) && defined(HAVE_NET_IF_H) && defined(__linux__)
#include <net/if.h>
#include <sys/ioctl.h>
#define SET_INTERFACE
#endif
#ifdef __MINGW32__
#include "win32.h"
#endif
#include "utils.h"
#include "tunnel.h"
#ifndef EAGAIN
#define EAGAIN EWOULDBLOCK
#endif
#ifndef EWOULDBLOCK
#define EWOULDBLOCK EAGAIN
#endif
#ifndef BUF_SIZE
#define BUF_SIZE 2048
#endif
int verbose = 0; int udprelay = 0;
#ifndef __MINGW32__
static int setnonblocking(int fd) { int flags; if (-1 ==(flags = fcntl(fd, F_GETFL, 0))) flags = 0; return fcntl(fd, F_SETFL, flags | O_NONBLOCK); } #endif
#ifdef SET_INTERFACE
int setinterface(int socket_fd, const char* interface_name) { struct ifreq interface; memset(&interface, 0, sizeof(interface)); strncpy(interface.ifr_name, interface_name, IFNAMSIZ); int res = setsockopt(socket_fd, SOL_SOCKET, SO_BINDTODEVICE, &interface, sizeof(struct ifreq)); return res; } #endif
int create_and_bind(const char *addr, const char *port) { struct addrinfo hints; struct addrinfo *result, *rp; int s, listen_sock;
memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_UNSPEC; /* Return IPv4 and IPv6 choices */ hints.ai_socktype = SOCK_STREAM; /* We want a TCP socket */
s = getaddrinfo(addr, port, &hints, &result); if (s != 0) { LOGD("getaddrinfo: %s", gai_strerror(s)); return -1; }
for (rp = result; rp != NULL; rp = rp->ai_next) { listen_sock = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); if (listen_sock == -1) continue;
int opt = 1; setsockopt(listen_sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)); setsockopt(listen_sock, IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt)); #ifdef SO_NOSIGPIPE
setsockopt(listen_sock, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt)); #endif
s = bind(listen_sock, rp->ai_addr, rp->ai_addrlen); if (s == 0) { /* We managed to bind successfully! */ break; } else { ERROR("bind"); }
close(listen_sock); }
if (rp == NULL) { LOGE("Could not bind"); return -1; }
freeaddrinfo(result);
return listen_sock; }
static void server_recv_cb (EV_P_ ev_io *w, int revents) { struct server_ctx *server_recv_ctx = (struct server_ctx *)w; struct server *server = server_recv_ctx->server; struct remote *remote = server->remote;
if (remote == NULL) { close_and_free_server(EV_A_ server); return; }
ssize_t r = recv(server->fd, remote->buf, BUF_SIZE, 0);
if (r == 0) { // connection closed
remote->buf_len = 0; remote->buf_idx = 0; close_and_free_server(EV_A_ server); if (remote != NULL) { ev_io_start(EV_A_ &remote->send_ctx->io); } return; } else if(r < 0) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data
// continue to wait for recv
return; } else { ERROR("server recv"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } }
remote->buf = ss_encrypt(BUF_SIZE, remote->buf, &r, server->e_ctx);
if (remote->buf == NULL) { LOGE("invalid password or cipher"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; }
int s = send(remote->fd, remote->buf, r, 0);
if(s == -1) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data, wait for send
remote->buf_len = r; remote->buf_idx = 0; ev_io_stop(EV_A_ &server_recv_ctx->io); ev_io_start(EV_A_ &remote->send_ctx->io); return; } else { ERROR("send"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } else if(s < r) { remote->buf_len = r - s; remote->buf_idx = s; ev_io_stop(EV_A_ &server_recv_ctx->io); ev_io_start(EV_A_ &remote->send_ctx->io); return; } }
static void server_send_cb (EV_P_ ev_io *w, int revents) { struct server_ctx *server_send_ctx = (struct server_ctx *)w; struct server *server = server_send_ctx->server; struct remote *remote = server->remote; if (server->buf_len == 0) { // close and free
close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else { // has data to send
ssize_t s = send(server->fd, server->buf + server->buf_idx, server->buf_len, 0); if (s < 0) { if (errno != EAGAIN && errno != EWOULDBLOCK) { ERROR("send"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } return; } else if (s < server->buf_len) { // partly sent, move memory, wait for the next time to send
server->buf_len -= s; server->buf_idx += s; return; } else { // all sent out, wait for reading
server->buf_len = 0; server->buf_idx = 0; ev_io_stop(EV_A_ &server_send_ctx->io); if (remote != NULL) { ev_io_start(EV_A_ &remote->recv_ctx->io); } else { close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } }
}
static void remote_timeout_cb(EV_P_ ev_timer *watcher, int revents) { struct remote_ctx *remote_ctx = (struct remote_ctx *) (((void*)watcher) - sizeof(ev_io)); struct remote *remote = remote_ctx->remote; struct server *server = remote->server;
LOGD("remote timeout");
ev_timer_stop(EV_A_ watcher);
if (server == NULL) { close_and_free_remote(EV_A_ remote); return; } close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); }
static void remote_recv_cb (EV_P_ ev_io *w, int revents) { struct remote_ctx *remote_recv_ctx = (struct remote_ctx *)w; struct remote *remote = remote_recv_ctx->remote; struct server *server = remote->server; if (server == NULL) { close_and_free_remote(EV_A_ remote); return; }
ssize_t r = recv(remote->fd, server->buf, BUF_SIZE, 0);
if (r == 0) { // connection closed
server->buf_len = 0; server->buf_idx = 0; close_and_free_remote(EV_A_ remote); if (server != NULL) { ev_io_start(EV_A_ &server->send_ctx->io); } return; } else if(r < 0) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data
// continue to wait for recv
return; } else { ERROR("remote recv"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } }
server->buf = ss_decrypt(BUF_SIZE, server->buf, &r, server->d_ctx);
if (server->buf == NULL) { LOGE("invalid password or cipher"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; }
int s = send(server->fd, server->buf, r, 0);
if (s == -1) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data, wait for send
server->buf_len = r; server->buf_idx = 0; ev_io_stop(EV_A_ &remote_recv_ctx->io); ev_io_start(EV_A_ &server->send_ctx->io); return; } else { ERROR("send"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } else if (s < r) { server->buf_len = r - s; server->buf_idx = s; ev_io_stop(EV_A_ &remote_recv_ctx->io); ev_io_start(EV_A_ &server->send_ctx->io); return; } }
static void remote_send_cb (EV_P_ ev_io *w, int revents) { struct remote_ctx *remote_send_ctx = (struct remote_ctx *)w; struct remote *remote = remote_send_ctx->remote; struct server *server = remote->server;
if (!remote_send_ctx->connected) {
struct sockaddr_storage addr; socklen_t len = sizeof addr; int r = getpeername(remote->fd, (struct sockaddr*)&addr, &len); if (r == 0) { remote_send_ctx->connected = 1; ev_io_stop(EV_A_ &remote_send_ctx->io); ev_timer_stop(EV_A_ &remote_send_ctx->watcher);
// send destaddr
char *ss_addr_to_send = malloc(BUF_SIZE); ssize_t addr_len = 0; ss_addr_t *sa = &server->destaddr; int host_len = strlen(sa->host); uint16_t port = htons(atoi(sa->port));
// treat as domain
ss_addr_to_send[addr_len++] = 3; ss_addr_to_send[addr_len++] = host_len; memcpy(ss_addr_to_send + addr_len, sa->host, host_len); addr_len += host_len; memcpy(ss_addr_to_send + addr_len, &port, 2); addr_len += 2;
ss_addr_to_send = ss_encrypt(BUF_SIZE, ss_addr_to_send, &addr_len, server->e_ctx); if (ss_addr_to_send == NULL) { LOGE("invalid password or cipher"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; }
int s = send(remote->fd, ss_addr_to_send, addr_len, 0); free(ss_addr_to_send);
if (s < addr_len) { LOGE("failed to send remote addr."); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); }
ev_io_start(EV_A_ &remote->recv_ctx->io); ev_io_start(EV_A_ &server->recv_ctx->io);
return; } else { ERROR("getpeername"); // not connected
close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } else { if (remote->buf_len == 0) { // close and free
close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else { // has data to send
ssize_t s = send(remote->fd, remote->buf + remote->buf_idx, remote->buf_len, 0); if (s < 0) { if (errno != EAGAIN && errno != EWOULDBLOCK) { ERROR("send"); // close and free
close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } return; } else if (s < remote->buf_len) { // partly sent, move memory, wait for the next time to send
remote->buf_len -= s; remote->buf_idx += s; return; } else { // all sent out, wait for reading
remote->buf_len = 0; remote->buf_idx = 0; ev_io_stop(EV_A_ &remote_send_ctx->io); if (server != NULL) { ev_io_start(EV_A_ &server->recv_ctx->io); } else { close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } }
} }
struct remote* new_remote(int fd, int timeout) { struct remote *remote; remote = malloc(sizeof(struct remote)); remote->buf = malloc(BUF_SIZE); remote->recv_ctx = malloc(sizeof(struct remote_ctx)); remote->send_ctx = malloc(sizeof(struct remote_ctx)); remote->fd = fd; ev_io_init(&remote->recv_ctx->io, remote_recv_cb, fd, EV_READ); ev_io_init(&remote->send_ctx->io, remote_send_cb, fd, EV_WRITE); ev_timer_init(&remote->send_ctx->watcher, remote_timeout_cb, timeout, 0); remote->recv_ctx->remote = remote; remote->recv_ctx->connected = 0; remote->send_ctx->remote = remote; remote->send_ctx->connected = 0; remote->buf_len = 0; remote->buf_idx = 0; return remote; }
static void free_remote(struct remote *remote) { if (remote != NULL) { if (remote->server != NULL) { remote->server->remote = NULL; } if (remote->buf) { free(remote->buf); } free(remote->recv_ctx); free(remote->send_ctx); free(remote); } }
static void close_and_free_remote(EV_P_ struct remote *remote) { if (remote != NULL) { ev_timer_stop(EV_A_ &remote->send_ctx->watcher); ev_io_stop(EV_A_ &remote->send_ctx->io); ev_io_stop(EV_A_ &remote->recv_ctx->io); close(remote->fd); free_remote(remote); } }
struct server* new_server(int fd, int method) { struct server *server; server = malloc(sizeof(struct server)); server->buf = malloc(BUF_SIZE); server->recv_ctx = malloc(sizeof(struct server_ctx)); server->send_ctx = malloc(sizeof(struct server_ctx)); server->fd = fd; ev_io_init(&server->recv_ctx->io, server_recv_cb, fd, EV_READ); ev_io_init(&server->send_ctx->io, server_send_cb, fd, EV_WRITE); server->recv_ctx->server = server; server->recv_ctx->connected = 0; server->send_ctx->server = server; server->send_ctx->connected = 0; if (method) { server->e_ctx = malloc(sizeof(struct enc_ctx)); server->d_ctx = malloc(sizeof(struct enc_ctx)); enc_ctx_init(method, server->e_ctx, 1); enc_ctx_init(method, server->d_ctx, 0); } else { server->e_ctx = NULL; server->d_ctx = NULL; } server->buf_len = 0; server->buf_idx = 0; return server; }
static void free_server(struct server *server) { if (server != NULL) { if (server->remote != NULL) { server->remote->server = NULL; } if (server->e_ctx != NULL) { cipher_context_release(&server->e_ctx->evp); free(server->e_ctx); } if (server->d_ctx != NULL) { cipher_context_release(&server->d_ctx->evp); free(server->d_ctx); } if (server->buf) { free(server->buf); } free(server->recv_ctx); free(server->send_ctx); free(server); } }
static void close_and_free_server(EV_P_ struct server *server) { if (server != NULL) { ev_io_stop(EV_A_ &server->send_ctx->io); ev_io_stop(EV_A_ &server->recv_ctx->io); close(server->fd); free_server(server); } }
static void accept_cb (EV_P_ ev_io *w, int revents) { struct listen_ctx *listener = (struct listen_ctx *)w; int serverfd = accept(listener->fd, NULL, NULL); if (serverfd == -1) { ERROR("accept"); return; } setnonblocking(serverfd); int opt = 1; setsockopt(serverfd, IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt)); #ifdef SO_NOSIGPIPE
setsockopt(serverfd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt)); #endif
struct addrinfo hints, *res; int sockfd; memset(&hints, 0, sizeof hints); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; int index = rand() % listener->remote_num; if (verbose) { LOGD("connect to %s:%s", listener->remote_addr[index].host, listener->remote_addr[index].port); } int err = getaddrinfo(listener->remote_addr[index].host, listener->remote_addr[index].port, &hints, &res); if (err) { ERROR("getaddrinfo"); return; }
sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol); if (sockfd < 0) { ERROR("socket"); freeaddrinfo(res); return; }
setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt)); #ifdef SO_NOSIGPIPE
setsockopt(sockfd, SOL_SOCKET, SO_NOSIGPIPE, &opt, sizeof(opt)); #endif
// Setup
setnonblocking(sockfd); #ifdef SET_INTERFACE
if (listener->iface) setinterface(sockfd, listener->iface); #endif
struct server *server = new_server(serverfd, listener->method); struct remote *remote = new_remote(sockfd, listener->timeout); server->destaddr = listener->tunnel_addr; server->remote = remote; remote->server = server; connect(sockfd, res->ai_addr, res->ai_addrlen); freeaddrinfo(res); // listen to remote connected event
ev_io_start(EV_A_ &remote->send_ctx->io); ev_timer_start(EV_A_ &remote->send_ctx->watcher); }
int main (int argc, char **argv) {
int i, c; int pid_flags = 0; char *user = NULL; char *local_port = NULL; char *local_addr = NULL; char *password = NULL; char *timeout = NULL; char *method = NULL; char *pid_path = NULL; char *conf_path = NULL; char *iface = NULL;
int remote_num = 0; ss_addr_t remote_addr[MAX_REMOTE_NUM]; char *remote_port = NULL;
ss_addr_t tunnel_addr = {.host = NULL, .port = NULL}; char *tunnel_addr_str = NULL;
opterr = 0;
while ((c = getopt (argc, argv, "f:s:p:l:k:t:m:i:c:b:L:a:uv")) != -1) { switch (c) { case 's': remote_addr[remote_num].host = optarg; remote_addr[remote_num++].port = NULL; break; case 'p': remote_port = optarg; break; case 'l': local_port = optarg; break; case 'k': password = optarg; break; case 'f': pid_flags = 1; pid_path = optarg; break; case 't': timeout = optarg; break; case 'm': method = optarg; break; case 'c': conf_path = optarg; break; case 'i': iface = optarg; break; case 'b': local_addr = optarg; break; case 'u': udprelay = 1; break; case 'L': tunnel_addr_str = optarg; break; case 'a': user = optarg; break; case 'v': verbose = 1; break; } }
if (opterr) { usage(); exit(EXIT_FAILURE); }
if (conf_path != NULL) { jconf_t *conf = read_jconf(conf_path); if (remote_num == 0) { remote_num = conf->remote_num; for (i = 0; i < remote_num; i++) { remote_addr[i] = conf->remote_addr[i]; } } if (remote_port == NULL) remote_port = conf->remote_port; if (local_addr == NULL) local_addr = conf->local_addr; if (local_port == NULL) local_port = conf->local_port; if (password == NULL) password = conf->password; if (method == NULL) method = conf->method; if (timeout == NULL) timeout = conf->timeout; }
if (remote_num == 0 || remote_port == NULL || tunnel_addr_str == NULL || local_port == NULL || password == NULL) { usage(); exit(EXIT_FAILURE); }
if (timeout == NULL) timeout = "10";
if (local_addr == NULL) local_addr = "0.0.0.0";
if (pid_flags) { USE_SYSLOG(argv[0]); daemonize(pid_path); }
// parse tunnel addr
parse_addr(tunnel_addr_str, &tunnel_addr);
#ifdef __MINGW32__
winsock_init(); #else
// ignore SIGPIPE
signal(SIGPIPE, SIG_IGN); signal(SIGABRT, SIG_IGN); #endif
// Setup keys
LOGD("initialize ciphers... %s", method); int m = enc_init(password, method);
// Setup socket
int listenfd; listenfd = create_and_bind(local_addr, local_port); if (listenfd < 0) { FATAL("bind() error.."); } if (listen(listenfd, SOMAXCONN) == -1) { FATAL("listen() error."); } setnonblocking(listenfd); LOGD("server listening at port %s.", local_port);
// Setup proxy context
struct listen_ctx listen_ctx; listen_ctx.tunnel_addr = tunnel_addr; listen_ctx.remote_num = remote_num; listen_ctx.remote_addr = malloc(sizeof(ss_addr_t) * remote_num); while (remote_num > 0) { int index = --remote_num; if (remote_addr[index].port == NULL) remote_addr[index].port = remote_port; listen_ctx.remote_addr[index] = remote_addr[index]; } listen_ctx.timeout = atoi(timeout); listen_ctx.fd = listenfd; listen_ctx.iface = iface; listen_ctx.method = m;
struct ev_loop *loop = ev_default_loop(0); if (!loop) { FATAL("ev_loop error."); } ev_io_init (&listen_ctx.io, accept_cb, listenfd, EV_READ); ev_io_start (loop, &listen_ctx.io);
// Setup UDP
if (udprelay) { LOGD("udprelay enabled."); udprelay_init(local_addr, local_port, remote_addr[0].host, remote_addr[0].port, tunnel_addr, m, listen_ctx.timeout, iface); }
// setuid
if (user != NULL) run_as(user);
ev_run (loop, 0);
#ifdef __MINGW32__
winsock_cleanup(); #endif
return 0; }
|