|
|
/*
* libev event processing core, watcher management * * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de> * All rights reserved. * * Redistribution and use in source and binary forms, with or without modifica- * tion, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, the contents of this file may be used under the terms of * the GNU General Public License ("GPL") version 2 or any later version, * in which case the provisions of the GPL are applicable instead of * the above. If you wish to allow the use of your version of this file * only under the terms of the GPL and not to allow others to use your * version of this file under the BSD license, indicate your decision * by deleting the provisions above and replace them with the notice * and other provisions required by the GPL. If you do not delete the * provisions above, a recipient may use your version of this file under * either the BSD or the GPL. */
/* this big block deduces configuration from config.h */ #ifndef EV_STANDALONE
# ifdef EV_CONFIG_H
# include EV_CONFIG_H
# else
# include "config.h"
# endif
# if HAVE_FLOOR
# ifndef EV_USE_FLOOR
# define EV_USE_FLOOR 1
# endif
# endif
# if HAVE_CLOCK_SYSCALL
# ifndef EV_USE_CLOCK_SYSCALL
# define EV_USE_CLOCK_SYSCALL 1
# ifndef EV_USE_REALTIME
# define EV_USE_REALTIME 0
# endif
# ifndef EV_USE_MONOTONIC
# define EV_USE_MONOTONIC 1
# endif
# endif
# elif !defined EV_USE_CLOCK_SYSCALL
# define EV_USE_CLOCK_SYSCALL 0
# endif
# if HAVE_CLOCK_GETTIME
# ifndef EV_USE_MONOTONIC
# define EV_USE_MONOTONIC 1
# endif
# ifndef EV_USE_REALTIME
# define EV_USE_REALTIME 0
# endif
# else
# ifndef EV_USE_MONOTONIC
# define EV_USE_MONOTONIC 0
# endif
# ifndef EV_USE_REALTIME
# define EV_USE_REALTIME 0
# endif
# endif
# if HAVE_NANOSLEEP
# ifndef EV_USE_NANOSLEEP
# define EV_USE_NANOSLEEP EV_FEATURE_OS
# endif
# else
# undef EV_USE_NANOSLEEP
# define EV_USE_NANOSLEEP 0
# endif
# if HAVE_SELECT && HAVE_SYS_SELECT_H
# ifndef EV_USE_SELECT
# define EV_USE_SELECT EV_FEATURE_BACKENDS
# endif
# else
# undef EV_USE_SELECT
# define EV_USE_SELECT 0
# endif
# if HAVE_POLL && HAVE_POLL_H
# ifndef EV_USE_POLL
# define EV_USE_POLL EV_FEATURE_BACKENDS
# endif
# else
# undef EV_USE_POLL
# define EV_USE_POLL 0
# endif
# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
# ifndef EV_USE_EPOLL
# define EV_USE_EPOLL EV_FEATURE_BACKENDS
# endif
# else
# undef EV_USE_EPOLL
# define EV_USE_EPOLL 0
# endif
# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
# ifndef EV_USE_KQUEUE
# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
# endif
# else
# undef EV_USE_KQUEUE
# define EV_USE_KQUEUE 0
# endif
# if HAVE_PORT_H && HAVE_PORT_CREATE
# ifndef EV_USE_PORT
# define EV_USE_PORT EV_FEATURE_BACKENDS
# endif
# else
# undef EV_USE_PORT
# define EV_USE_PORT 0
# endif
# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
# ifndef EV_USE_INOTIFY
# define EV_USE_INOTIFY EV_FEATURE_OS
# endif
# else
# undef EV_USE_INOTIFY
# define EV_USE_INOTIFY 0
# endif
# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
# ifndef EV_USE_SIGNALFD
# define EV_USE_SIGNALFD EV_FEATURE_OS
# endif
# else
# undef EV_USE_SIGNALFD
# define EV_USE_SIGNALFD 0
# endif
# if HAVE_EVENTFD
# ifndef EV_USE_EVENTFD
# define EV_USE_EVENTFD EV_FEATURE_OS
# endif
# else
# undef EV_USE_EVENTFD
# define EV_USE_EVENTFD 0
# endif
#endif
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <stddef.h>
#include <stdio.h>
#include <assert.h>
#include <errno.h>
#include <sys/types.h>
#include <time.h>
#include <limits.h>
#include <signal.h>
#ifdef EV_H
# include EV_H
#else
# include "ev.h"
#endif
#if EV_NO_THREADS
# undef EV_NO_SMP
# define EV_NO_SMP 1
# undef ECB_NO_THREADS
# define ECB_NO_THREADS 1
#endif
#if EV_NO_SMP
# undef EV_NO_SMP
# define ECB_NO_SMP 1
#endif
#ifndef _WIN32
# include <sys/time.h>
# include <sys/wait.h>
# include <unistd.h>
#else
# include <io.h>
# define WIN32_LEAN_AND_MEAN
# include <winsock2.h>
# include <windows.h>
# ifndef EV_SELECT_IS_WINSOCKET
# define EV_SELECT_IS_WINSOCKET 1
# endif
# undef EV_AVOID_STDIO
#endif
/* OS X, in its infinite idiocy, actually HARDCODES
* a limit of 1024 into their select. Where people have brains, * OS X engineers apparently have a vacuum. Or maybe they were * ordered to have a vacuum, or they do anything for money. * This might help. Or not. */ #define _DARWIN_UNLIMITED_SELECT 1
/* this block tries to deduce configuration from header-defined symbols and defaults */
/* try to deduce the maximum number of signals on this platform */ #if defined EV_NSIG
/* use what's provided */ #elif defined NSIG
# define EV_NSIG (NSIG)
#elif defined _NSIG
# define EV_NSIG (_NSIG)
#elif defined SIGMAX
# define EV_NSIG (SIGMAX+1)
#elif defined SIG_MAX
# define EV_NSIG (SIG_MAX+1)
#elif defined _SIG_MAX
# define EV_NSIG (_SIG_MAX+1)
#elif defined MAXSIG
# define EV_NSIG (MAXSIG+1)
#elif defined MAX_SIG
# define EV_NSIG (MAX_SIG+1)
#elif defined SIGARRAYSIZE
# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
#elif defined _sys_nsig
# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
#else
# define EV_NSIG (8 * sizeof (sigset_t) + 1)
#endif
#ifndef EV_USE_FLOOR
# define EV_USE_FLOOR 0
#endif
#ifndef EV_USE_CLOCK_SYSCALL
# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
# else
# define EV_USE_CLOCK_SYSCALL 0
# endif
#endif
#if !(_POSIX_TIMERS > 0)
# ifndef EV_USE_MONOTONIC
# define EV_USE_MONOTONIC 0
# endif
# ifndef EV_USE_REALTIME
# define EV_USE_REALTIME 0
# endif
#endif
#ifndef EV_USE_MONOTONIC
# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
# define EV_USE_MONOTONIC EV_FEATURE_OS
# else
# define EV_USE_MONOTONIC 0
# endif
#endif
#ifndef EV_USE_REALTIME
# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
#endif
#ifndef EV_USE_NANOSLEEP
# if _POSIX_C_SOURCE >= 199309L
# define EV_USE_NANOSLEEP EV_FEATURE_OS
# else
# define EV_USE_NANOSLEEP 0
# endif
#endif
#ifndef EV_USE_SELECT
# define EV_USE_SELECT EV_FEATURE_BACKENDS
#endif
#ifndef EV_USE_POLL
# ifdef _WIN32
# define EV_USE_POLL 0
# else
# define EV_USE_POLL EV_FEATURE_BACKENDS
# endif
#endif
#ifndef EV_USE_EPOLL
# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
# define EV_USE_EPOLL EV_FEATURE_BACKENDS
# else
# define EV_USE_EPOLL 0
# endif
#endif
#ifndef EV_USE_KQUEUE
# define EV_USE_KQUEUE 0
#endif
#ifndef EV_USE_PORT
# define EV_USE_PORT 0
#endif
#ifndef EV_USE_INOTIFY
# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
# define EV_USE_INOTIFY EV_FEATURE_OS
# else
# define EV_USE_INOTIFY 0
# endif
#endif
#ifndef EV_PID_HASHSIZE
# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
#endif
#ifndef EV_INOTIFY_HASHSIZE
# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
#endif
#ifndef EV_USE_EVENTFD
# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
# define EV_USE_EVENTFD EV_FEATURE_OS
# else
# define EV_USE_EVENTFD 0
# endif
#endif
#ifndef EV_USE_SIGNALFD
# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
# define EV_USE_SIGNALFD EV_FEATURE_OS
# else
# define EV_USE_SIGNALFD 0
# endif
#endif
#if 0 /* debugging */
# define EV_VERIFY 3
# define EV_USE_4HEAP 1
# define EV_HEAP_CACHE_AT 1
#endif
#ifndef EV_VERIFY
# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
#endif
#ifndef EV_USE_4HEAP
# define EV_USE_4HEAP EV_FEATURE_DATA
#endif
#ifndef EV_HEAP_CACHE_AT
# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
#endif
#ifdef ANDROID
/* supposedly, android doesn't typedef fd_mask */ # undef EV_USE_SELECT
# define EV_USE_SELECT 0
/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */ # undef EV_USE_CLOCK_SYSCALL
# define EV_USE_CLOCK_SYSCALL 0
#endif
/* aix's poll.h seems to cause lots of trouble */ #ifdef _AIX
/* AIX has a completely broken poll.h header */ # undef EV_USE_POLL
# define EV_USE_POLL 0
#endif
/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */ /* which makes programs even slower. might work on other unices, too. */ #if EV_USE_CLOCK_SYSCALL
# include <sys/syscall.h>
# ifdef SYS_clock_gettime
# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
# undef EV_USE_MONOTONIC
# define EV_USE_MONOTONIC 1
# else
# undef EV_USE_CLOCK_SYSCALL
# define EV_USE_CLOCK_SYSCALL 0
# endif
#endif
/* this block fixes any misconfiguration where we know we run into trouble otherwise */
#ifndef CLOCK_MONOTONIC
# undef EV_USE_MONOTONIC
# define EV_USE_MONOTONIC 0
#endif
#ifndef CLOCK_REALTIME
# undef EV_USE_REALTIME
# define EV_USE_REALTIME 0
#endif
#if !EV_STAT_ENABLE
# undef EV_USE_INOTIFY
# define EV_USE_INOTIFY 0
#endif
#if !EV_USE_NANOSLEEP
/* hp-ux has it in sys/time.h, which we unconditionally include above */ # if !defined _WIN32 && !defined __hpux
# include <sys/select.h>
# endif
#endif
#if EV_USE_INOTIFY
# include <sys/statfs.h>
# include <sys/inotify.h>
/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ # ifndef IN_DONT_FOLLOW
# undef EV_USE_INOTIFY
# define EV_USE_INOTIFY 0
# endif
#endif
#if EV_USE_EVENTFD
/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ # include <stdint.h>
# ifndef EFD_NONBLOCK
# define EFD_NONBLOCK O_NONBLOCK
# endif
# ifndef EFD_CLOEXEC
# ifdef O_CLOEXEC
# define EFD_CLOEXEC O_CLOEXEC
# else
# define EFD_CLOEXEC 02000000
# endif
# endif
EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags); #endif
#if EV_USE_SIGNALFD
/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ # include <stdint.h>
# ifndef SFD_NONBLOCK
# define SFD_NONBLOCK O_NONBLOCK
# endif
# ifndef SFD_CLOEXEC
# ifdef O_CLOEXEC
# define SFD_CLOEXEC O_CLOEXEC
# else
# define SFD_CLOEXEC 02000000
# endif
# endif
EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
struct signalfd_siginfo { uint32_t ssi_signo; char pad[128 - sizeof (uint32_t)]; }; #endif
/**/
#if EV_VERIFY >= 3
# define EV_FREQUENT_CHECK ev_verify (EV_A)
#else
# define EV_FREQUENT_CHECK do { } while (0)
#endif
/*
* This is used to work around floating point rounding problems. * This value is good at least till the year 4000. */ #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */ /* ECB.H BEGIN */ /*
* libecb - http://software.schmorp.de/pkg/libecb
* * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de> * Copyright (©) 2011 Emanuele Giaquinta * All rights reserved. * * Redistribution and use in source and binary forms, with or without modifica- * tion, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, the contents of this file may be used under the terms of * the GNU General Public License ("GPL") version 2 or any later version, * in which case the provisions of the GPL are applicable instead of * the above. If you wish to allow the use of your version of this file * only under the terms of the GPL and not to allow others to use your * version of this file under the BSD license, indicate your decision * by deleting the provisions above and replace them with the notice * and other provisions required by the GPL. If you do not delete the * provisions above, a recipient may use your version of this file under * either the BSD or the GPL. */
#ifndef ECB_H
#define ECB_H
/* 16 bits major, 16 bits minor */ #define ECB_VERSION 0x00010004
#ifdef _WIN32
typedef signed char int8_t; typedef unsigned char uint8_t; typedef signed short int16_t; typedef unsigned short uint16_t; typedef signed int int32_t; typedef unsigned int uint32_t; #if __GNUC__
typedef signed long long int64_t; typedef unsigned long long uint64_t; #else /* _MSC_VER || __BORLANDC__ */
typedef signed __int64 int64_t; typedef unsigned __int64 uint64_t; #endif
#ifdef _WIN64
#define ECB_PTRSIZE 8
typedef uint64_t uintptr_t; typedef int64_t intptr_t; #else
#define ECB_PTRSIZE 4
typedef uint32_t uintptr_t; typedef int32_t intptr_t; #endif
#else
#include <inttypes.h>
#if UINTMAX_MAX > 0xffffffffU
#define ECB_PTRSIZE 8
#else
#define ECB_PTRSIZE 4
#endif
#endif
#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
/* work around x32 idiocy by defining proper macros */ #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
#if _ILP32
#define ECB_AMD64_X32 1
#else
#define ECB_AMD64 1
#endif
#endif
/* many compilers define _GNUC_ to some versions but then only implement
* what their idiot authors think are the "more important" extensions, * causing enormous grief in return for some better fake benchmark numbers. * or so. * we try to detect these and simply assume they are not gcc - if they have * an issue with that they should have done it right in the first place. */ #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
#define ECB_GCC_VERSION(major,minor) 0
#else
#define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
#endif
#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
#if __clang__ && defined __has_builtin
#define ECB_CLANG_BUILTIN(x) __has_builtin (x)
#else
#define ECB_CLANG_BUILTIN(x) 0
#endif
#if __clang__ && defined __has_extension
#define ECB_CLANG_EXTENSION(x) __has_extension (x)
#else
#define ECB_CLANG_EXTENSION(x) 0
#endif
#define ECB_CPP (__cplusplus+0)
#define ECB_CPP11 (__cplusplus >= 201103L)
#if ECB_CPP
#define ECB_C 0
#define ECB_STDC_VERSION 0
#else
#define ECB_C 1
#define ECB_STDC_VERSION __STDC_VERSION__
#endif
#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
#if ECB_CPP
#define ECB_EXTERN_C extern "C"
#define ECB_EXTERN_C_BEG ECB_EXTERN_C {
#define ECB_EXTERN_C_END }
#else
#define ECB_EXTERN_C extern
#define ECB_EXTERN_C_BEG
#define ECB_EXTERN_C_END
#endif
/*****************************************************************************/
/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */ /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
#if ECB_NO_THREADS
#define ECB_NO_SMP 1
#endif
#if ECB_NO_SMP
#define ECB_MEMORY_FENCE do { } while (0)
#endif
/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */ #if __xlC__ && ECB_CPP
#include <builtins.h>
#endif
#ifndef ECB_MEMORY_FENCE
#if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
#if __i386 || __i386__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
#define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
#define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
#elif ECB_GCC_AMD64
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
#define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
#define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
#elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
#elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
|| defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
#elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
|| defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__ #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
#elif __aarch64__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
#elif (__sparc || __sparc__) && !__sparcv8
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
#define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
#define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
#elif defined __s390__ || defined __s390x__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
#elif defined __mips__
/* GNU/Linux emulates sync on mips1 architectures, so we force its use */ /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */ #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
#elif defined __alpha__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
#elif defined __hppa__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
#define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
#elif defined __ia64__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
#elif defined __m68k__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
#elif defined __m88k__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
#elif defined __sh__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
#endif
#endif
#endif
#ifndef ECB_MEMORY_FENCE
#if ECB_GCC_VERSION(4,7)
/* see comment below (stdatomic.h) about the C11 memory model. */ #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
#define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
#define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
#elif ECB_CLANG_EXTENSION(c_atomic)
/* see comment below (stdatomic.h) about the C11 memory model. */ #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
#define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
#define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
#elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
#define ECB_MEMORY_FENCE __sync_synchronize ()
#elif _MSC_VER >= 1500 /* VC++ 2008 */
/* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */ #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
#define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
#define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
#define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
#elif _MSC_VER >= 1400 /* VC++ 2005 */
#pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
#define ECB_MEMORY_FENCE _ReadWriteBarrier ()
#define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
#define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
#elif defined _WIN32
#include <WinNT.h>
#define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
#elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
#include <mbarrier.h>
#define ECB_MEMORY_FENCE __machine_rw_barrier ()
#define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
#define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
#elif __xlC__
#define ECB_MEMORY_FENCE __sync ()
#endif
#endif
#ifndef ECB_MEMORY_FENCE
#if ECB_C11 && !defined __STDC_NO_ATOMICS__
/* we assume that these memory fences work on all variables/all memory accesses, */ /* not just C11 atomics and atomic accesses */ #include <stdatomic.h>
/* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */ /* any fence other than seq_cst, which isn't very efficient for us. */ /* Why that is, we don't know - either the C11 memory model is quite useless */ /* for most usages, or gcc and clang have a bug */ /* I *currently* lean towards the latter, and inefficiently implement */ /* all three of ecb's fences as a seq_cst fence */ /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */ /* for all __atomic_thread_fence's except seq_cst */ #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
#endif
#endif
#ifndef ECB_MEMORY_FENCE
#if !ECB_AVOID_PTHREADS
/*
* if you get undefined symbol references to pthread_mutex_lock, * or failure to find pthread.h, then you should implement * the ECB_MEMORY_FENCE operations for your cpu/compiler * OR provide pthread.h and link against the posix thread library * of your system. */ #include <pthread.h>
#define ECB_NEEDS_PTHREADS 1
#define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER; #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
#endif
#endif
#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
#define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
#endif
#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
#define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
#endif
/*****************************************************************************/
#if ECB_CPP
#define ecb_inline static inline
#elif ECB_GCC_VERSION(2,5)
#define ecb_inline static __inline__
#elif ECB_C99
#define ecb_inline static inline
#else
#define ecb_inline static
#endif
#if ECB_GCC_VERSION(3,3)
#define ecb_restrict __restrict__
#elif ECB_C99
#define ecb_restrict restrict
#else
#define ecb_restrict
#endif
typedef int ecb_bool;
#define ECB_CONCAT_(a, b) a ## b
#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
#define ECB_STRINGIFY_(a) # a
#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
#define ecb_function_ ecb_inline
#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
#define ecb_attribute(attrlist) __attribute__ (attrlist)
#else
#define ecb_attribute(attrlist)
#endif
#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
#define ecb_is_constant(expr) __builtin_constant_p (expr)
#else
/* possible C11 impl for integral types
typedef struct ecb_is_constant_struct ecb_is_constant_struct; #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
#define ecb_is_constant(expr) 0
#endif
#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
#define ecb_expect(expr,value) __builtin_expect ((expr),(value))
#else
#define ecb_expect(expr,value) (expr)
#endif
#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
#define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
#else
#define ecb_prefetch(addr,rw,locality)
#endif
/* no emulation for ecb_decltype */ #if ECB_CPP11
// older implementations might have problems with decltype(x)::type, work around it
template<class T> struct ecb_decltype_t { typedef T type; }; #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
#define ecb_decltype(x) __typeof__ (x)
#endif
#if _MSC_VER >= 1300
#define ecb_deprecated __declspec (deprecated)
#else
#define ecb_deprecated ecb_attribute ((__deprecated__))
#endif
#if _MSC_VER >= 1500
#define ecb_deprecated_message(msg) __declspec (deprecated (msg))
#elif ECB_GCC_VERSION(4,5)
#define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
#else
#define ecb_deprecated_message(msg) ecb_deprecated
#endif
#if _MSC_VER >= 1400
#define ecb_noinline __declspec (noinline)
#else
#define ecb_noinline ecb_attribute ((__noinline__))
#endif
#define ecb_unused ecb_attribute ((__unused__))
#define ecb_const ecb_attribute ((__const__))
#define ecb_pure ecb_attribute ((__pure__))
#if ECB_C11 || __IBMC_NORETURN
/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */ #define ecb_noreturn _Noreturn
#elif ECB_CPP11
#define ecb_noreturn [[noreturn]]
#elif _MSC_VER >= 1200
/* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */ #define ecb_noreturn __declspec (noreturn)
#else
#define ecb_noreturn ecb_attribute ((__noreturn__))
#endif
#if ECB_GCC_VERSION(4,3)
#define ecb_artificial ecb_attribute ((__artificial__))
#define ecb_hot ecb_attribute ((__hot__))
#define ecb_cold ecb_attribute ((__cold__))
#else
#define ecb_artificial
#define ecb_hot
#define ecb_cold
#endif
/* put around conditional expressions if you are very sure that the */ /* expression is mostly true or mostly false. note that these return */ /* booleans, not the expression. */ #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
/* for compatibility to the rest of the world */ #define ecb_likely(expr) ecb_expect_true (expr)
#define ecb_unlikely(expr) ecb_expect_false (expr)
/* count trailing zero bits and count # of one bits */ #if ECB_GCC_VERSION(3,4) \
|| (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \ && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \ && ECB_CLANG_BUILTIN(__builtin_popcount)) /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */ #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
#define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
#define ecb_ctz32(x) __builtin_ctz (x)
#define ecb_ctz64(x) __builtin_ctzll (x)
#define ecb_popcount32(x) __builtin_popcount (x)
/* no popcountll */ #else
ecb_function_ ecb_const int ecb_ctz32 (uint32_t x); ecb_function_ ecb_const int ecb_ctz32 (uint32_t x) { int r = 0;
x &= ~x + 1; /* this isolates the lowest bit */
#if ECB_branchless_on_i386
r += !!(x & 0xaaaaaaaa) << 0; r += !!(x & 0xcccccccc) << 1; r += !!(x & 0xf0f0f0f0) << 2; r += !!(x & 0xff00ff00) << 3; r += !!(x & 0xffff0000) << 4; #else
if (x & 0xaaaaaaaa) r += 1; if (x & 0xcccccccc) r += 2; if (x & 0xf0f0f0f0) r += 4; if (x & 0xff00ff00) r += 8; if (x & 0xffff0000) r += 16; #endif
return r; }
ecb_function_ ecb_const int ecb_ctz64 (uint64_t x); ecb_function_ ecb_const int ecb_ctz64 (uint64_t x) { int shift = x & 0xffffffffU ? 0 : 32; return ecb_ctz32 (x >> shift) + shift; }
ecb_function_ ecb_const int ecb_popcount32 (uint32_t x); ecb_function_ ecb_const int ecb_popcount32 (uint32_t x) { x -= (x >> 1) & 0x55555555; x = ((x >> 2) & 0x33333333) + (x & 0x33333333); x = ((x >> 4) + x) & 0x0f0f0f0f; x *= 0x01010101;
return x >> 24; }
ecb_function_ ecb_const int ecb_ld32 (uint32_t x); ecb_function_ ecb_const int ecb_ld32 (uint32_t x) { int r = 0;
if (x >> 16) { x >>= 16; r += 16; } if (x >> 8) { x >>= 8; r += 8; } if (x >> 4) { x >>= 4; r += 4; } if (x >> 2) { x >>= 2; r += 2; } if (x >> 1) { r += 1; }
return r; }
ecb_function_ ecb_const int ecb_ld64 (uint64_t x); ecb_function_ ecb_const int ecb_ld64 (uint64_t x) { int r = 0;
if (x >> 32) { x >>= 32; r += 32; }
return r + ecb_ld32 (x); } #endif
ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x); ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); } ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x); ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x); ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x) { return ( (x * 0x0802U & 0x22110U) | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16; }
ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x); ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x) { x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1); x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2); x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4); x = ( x >> 8 ) | ( x << 8);
return x; }
ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x); ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x) { x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4); x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8); x = ( x >> 16 ) | ( x << 16);
return x; }
/* popcount64 is only available on 64 bit cpus as gcc builtin */ /* so for this version we are lazy */ ecb_function_ ecb_const int ecb_popcount64 (uint64_t x); ecb_function_ ecb_const int ecb_popcount64 (uint64_t x) { return ecb_popcount32 (x) + ecb_popcount32 (x >> 32); }
ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count); ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count); ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count); ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count); ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count); ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count); ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count); ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); } ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); } ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); } ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); } ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); } ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); } ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); } ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
#if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
#define ecb_bswap16(x) __builtin_bswap16 (x)
#else
#define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
#endif
#define ecb_bswap32(x) __builtin_bswap32 (x)
#define ecb_bswap64(x) __builtin_bswap64 (x)
#elif _MSC_VER
#include <stdlib.h>
#define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
#define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
#define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
#else
ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x); ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x) { return ecb_rotl16 (x, 8); }
ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x); ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x) { return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16); }
ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x); ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x) { return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32); } #endif
#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
#define ecb_unreachable() __builtin_unreachable ()
#else
/* this seems to work fine, but gcc always emits a warning for it :/ */ ecb_inline ecb_noreturn void ecb_unreachable (void); ecb_inline ecb_noreturn void ecb_unreachable (void) { } #endif
/* try to tell the compiler that some condition is definitely true */ #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
ecb_inline ecb_const unsigned char ecb_byteorder_helper (void); ecb_inline ecb_const unsigned char ecb_byteorder_helper (void) { /* the union code still generates code under pressure in gcc, */ /* but less than using pointers, and always seems to */ /* successfully return a constant. */ /* the reason why we have this horrible preprocessor mess */ /* is to avoid it in all cases, at least on common architectures */ /* or when using a recent enough gcc version (>= 4.6) */ #if ((__i386 || __i386__) && !__VOS__) || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64
return 0x44; #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return 0x44; #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return 0x11; #else
union { uint32_t i; uint8_t c; } u = { 0x11223344 }; return u.c; #endif
}
ecb_inline ecb_const ecb_bool ecb_big_endian (void); ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; } ecb_inline ecb_const ecb_bool ecb_little_endian (void); ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
#if ECB_GCC_VERSION(3,0) || ECB_C99
#define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
#else
#define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
#endif
#if ECB_CPP
template<typename T> static inline T ecb_div_rd (T val, T div) { return val < 0 ? - ((-val + div - 1) / div) : (val ) / div; } template<typename T> static inline T ecb_div_ru (T val, T div) { return val < 0 ? - ((-val ) / div) : (val + div - 1) / div; } #else
#define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
#define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
#endif
#if ecb_cplusplus_does_not_suck
/* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ template<typename T, int N> static inline int ecb_array_length (const T (&arr)[N]) { return N; } #else
#define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
#endif
/*******************************************************************************/ /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
/* basically, everything uses "ieee pure-endian" floating point numbers */ /* the only noteworthy exception is ancient armle, which uses order 43218765 */ #if 0 \
|| __i386 || __i386__ \ || ECB_GCC_AMD64 \ || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \ || defined __s390__ || defined __s390x__ \ || defined __mips__ \ || defined __alpha__ \ || defined __hppa__ \ || defined __ia64__ \ || defined __m68k__ \ || defined __m88k__ \ || defined __sh__ \ || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \ || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \ || defined __aarch64__ #define ECB_STDFP 1
#include <string.h> /* for memcpy */
#else
#define ECB_STDFP 0
#endif
#ifndef ECB_NO_LIBM
#include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
/* only the oldest of old doesn't have this one. solaris. */ #ifdef INFINITY
#define ECB_INFINITY INFINITY
#else
#define ECB_INFINITY HUGE_VAL
#endif
#ifdef NAN
#define ECB_NAN NAN
#else
#define ECB_NAN ECB_INFINITY
#endif
#if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
#define ecb_ldexpf(x,e) ldexpf ((x), (e))
#define ecb_frexpf(x,e) frexpf ((x), (e))
#else
#define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
#define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
#endif
/* converts an ieee half/binary16 to a float */ ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x); ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x) { int e = (x >> 10) & 0x1f; int m = x & 0x3ff; float r;
if (!e ) r = ecb_ldexpf (m , -24); else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25); else if (m ) r = ECB_NAN; else r = ECB_INFINITY;
return x & 0x8000 ? -r : r; }
/* convert a float to ieee single/binary32 */ ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x); ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x) { uint32_t r;
#if ECB_STDFP
memcpy (&r, &x, 4); #else
/* slow emulation, works for anything but -0 */ uint32_t m; int e;
if (x == 0e0f ) return 0x00000000U; if (x > +3.40282346638528860e+38f) return 0x7f800000U; if (x < -3.40282346638528860e+38f) return 0xff800000U; if (x != x ) return 0x7fbfffffU;
m = ecb_frexpf (x, &e) * 0x1000000U;
r = m & 0x80000000U;
if (r) m = -m;
if (e <= -126) { m &= 0xffffffU; m >>= (-125 - e); e = -126; }
r |= (e + 126) << 23; r |= m & 0x7fffffU; #endif
return r; }
/* converts an ieee single/binary32 to a float */ ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x); ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x) { float r;
#if ECB_STDFP
memcpy (&r, &x, 4); #else
/* emulation, only works for normals and subnormals and +0 */ int neg = x >> 31; int e = (x >> 23) & 0xffU;
x &= 0x7fffffU;
if (e) x |= 0x800000U; else e = 1;
/* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */ r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
r = neg ? -r : r; #endif
return r; }
/* convert a double to ieee double/binary64 */ ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x); ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x) { uint64_t r;
#if ECB_STDFP
memcpy (&r, &x, 8); #else
/* slow emulation, works for anything but -0 */ uint64_t m; int e;
if (x == 0e0 ) return 0x0000000000000000U; if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U; if (x < -1.79769313486231470e+308) return 0xfff0000000000000U; if (x != x ) return 0X7ff7ffffffffffffU;
m = frexp (x, &e) * 0x20000000000000U;
r = m & 0x8000000000000000;;
if (r) m = -m;
if (e <= -1022) { m &= 0x1fffffffffffffU; m >>= (-1021 - e); e = -1022; }
r |= ((uint64_t)(e + 1022)) << 52; r |= m & 0xfffffffffffffU; #endif
return r; }
/* converts an ieee double/binary64 to a double */ ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x); ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x) { double r;
#if ECB_STDFP
memcpy (&r, &x, 8); #else
/* emulation, only works for normals and subnormals and +0 */ int neg = x >> 63; int e = (x >> 52) & 0x7ffU;
x &= 0xfffffffffffffU;
if (e) x |= 0x10000000000000U; else e = 1;
/* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */ r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
r = neg ? -r : r; #endif
return r; }
#endif
#endif
/* ECB.H END */
#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
/* if your architecture doesn't need memory fences, e.g. because it is
* single-cpu/core, or if you use libev in a project that doesn't use libev * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling * libev, in which cases the memory fences become nops. * alternatively, you can remove this #error and link against libpthread, * which will then provide the memory fences. */ # error "memory fences not defined for your architecture, please report"
#endif
#ifndef ECB_MEMORY_FENCE
# define ECB_MEMORY_FENCE do { } while (0)
# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
#endif
#define expect_false(cond) ecb_expect_false (cond)
#define expect_true(cond) ecb_expect_true (cond)
#define noinline ecb_noinline
#define inline_size ecb_inline
#if EV_FEATURE_CODE
# define inline_speed ecb_inline
#else
# define inline_speed static noinline
#endif
#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
#if EV_MINPRI == EV_MAXPRI
# define ABSPRI(w) (((W)w), 0)
#else
# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
#endif
#define EMPTY /* required for microsofts broken pseudo-c compiler */
#define EMPTY2(a,b) /* used to suppress some warnings */
typedef ev_watcher *W; typedef ev_watcher_list *WL; typedef ev_watcher_time *WT;
#define ev_active(w) ((W)(w))->active
#define ev_at(w) ((WT)(w))->at
#if EV_USE_REALTIME
/* sig_atomic_t is used to avoid per-thread variables or locking but still */ /* giving it a reasonably high chance of working on typical architectures */ static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ #endif
#if EV_USE_MONOTONIC
static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ #endif
#ifndef EV_FD_TO_WIN32_HANDLE
# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
#endif
#ifndef EV_WIN32_HANDLE_TO_FD
# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
#endif
#ifndef EV_WIN32_CLOSE_FD
# define EV_WIN32_CLOSE_FD(fd) close (fd)
#endif
#ifdef _WIN32
# include "ev_win32.c"
#endif
/*****************************************************************************/
/* define a suitable floor function (only used by periodics atm) */
#if EV_USE_FLOOR
# include <math.h>
# define ev_floor(v) floor (v)
#else
#include <float.h>
/* a floor() replacement function, should be independent of ev_tstamp type */ static ev_tstamp noinline ev_floor (ev_tstamp v) { /* the choice of shift factor is not terribly important */ #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.; #else
const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.; #endif
/* argument too large for an unsigned long? */ if (expect_false (v >= shift)) { ev_tstamp f;
if (v == v - 1.) return v; /* very large number */
f = shift * ev_floor (v * (1. / shift)); return f + ev_floor (v - f); }
/* special treatment for negative args? */ if (expect_false (v < 0.)) { ev_tstamp f = -ev_floor (-v);
return f - (f == v ? 0 : 1); }
/* fits into an unsigned long */ return (unsigned long)v; }
#endif
/*****************************************************************************/
#ifdef __linux
# include <sys/utsname.h>
#endif
static unsigned int noinline ecb_cold ev_linux_version (void) { #ifdef __linux
unsigned int v = 0; struct utsname buf; int i; char *p = buf.release;
if (uname (&buf)) return 0;
for (i = 3+1; --i; ) { unsigned int c = 0;
for (;;) { if (*p >= '0' && *p <= '9') c = c * 10 + *p++ - '0'; else { p += *p == '.'; break; } }
v = (v << 8) | c; }
return v; #else
return 0; #endif
}
/*****************************************************************************/
#if EV_AVOID_STDIO
static void noinline ecb_cold ev_printerr (const char *msg) { write (STDERR_FILENO, msg, strlen (msg)); } #endif
static void (*syserr_cb)(const char *msg) EV_THROW;
void ecb_cold ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW { syserr_cb = cb; }
static void noinline ecb_cold ev_syserr (const char *msg) { if (!msg) msg = "(libev) system error";
if (syserr_cb) syserr_cb (msg); else { #if EV_AVOID_STDIO
ev_printerr (msg); ev_printerr (": "); ev_printerr (strerror (errno)); ev_printerr ("\n"); #else
perror (msg); #endif
abort (); } }
static void * ev_realloc_emul (void *ptr, long size) EV_THROW { /* some systems, notably openbsd and darwin, fail to properly
* implement realloc (x, 0) (as required by both ansi c-89 and * the single unix specification, so work around them here. * recently, also (at least) fedora and debian started breaking it, * despite documenting it otherwise. */
if (size) return realloc (ptr, size);
free (ptr); return 0; }
static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
void ecb_cold ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW { alloc = cb; }
inline_speed void * ev_realloc (void *ptr, long size) { ptr = alloc (ptr, size);
if (!ptr && size) { #if EV_AVOID_STDIO
ev_printerr ("(libev) memory allocation failed, aborting.\n"); #else
fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size); #endif
abort (); }
return ptr; }
#define ev_malloc(size) ev_realloc (0, (size))
#define ev_free(ptr) ev_realloc ((ptr), 0)
/*****************************************************************************/
/* set in reify when reification needed */ #define EV_ANFD_REIFY 1
/* file descriptor info structure */ typedef struct { WL head; unsigned char events; /* the events watched for */ unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */ unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ unsigned char unused; #if EV_USE_EPOLL
unsigned int egen; /* generation counter to counter epoll bugs */ #endif
#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
SOCKET handle; #endif
#if EV_USE_IOCP
OVERLAPPED or, ow; #endif
} ANFD;
/* stores the pending event set for a given watcher */ typedef struct { W w; int events; /* the pending event set for the given watcher */ } ANPENDING;
#if EV_USE_INOTIFY
/* hash table entry per inotify-id */ typedef struct { WL head; } ANFS; #endif
/* Heap Entry */ #if EV_HEAP_CACHE_AT
/* a heap element */ typedef struct { ev_tstamp at; WT w; } ANHE;
#define ANHE_w(he) (he).w /* access watcher, read-write */
#define ANHE_at(he) (he).at /* access cached at, read-only */
#define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
#else
/* a heap element */ typedef WT ANHE;
#define ANHE_w(he) (he)
#define ANHE_at(he) (he)->at
#define ANHE_at_cache(he)
#endif
#if EV_MULTIPLICITY
struct ev_loop { ev_tstamp ev_rt_now; #define ev_rt_now ((loop)->ev_rt_now)
#define VAR(name,decl) decl;
#include "ev_vars.h"
#undef VAR
}; #include "ev_wrap.h"
static struct ev_loop default_loop_struct; EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
#else
EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */ #define VAR(name,decl) static decl;
#include "ev_vars.h"
#undef VAR
static int ev_default_loop_ptr;
#endif
#if EV_FEATURE_API
# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
# define EV_INVOKE_PENDING invoke_cb (EV_A)
#else
# define EV_RELEASE_CB (void)0
# define EV_ACQUIRE_CB (void)0
# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
#endif
#define EVBREAK_RECURSE 0x80
/*****************************************************************************/
#ifndef EV_HAVE_EV_TIME
ev_tstamp ev_time (void) EV_THROW { #if EV_USE_REALTIME
if (expect_true (have_realtime)) { struct timespec ts; clock_gettime (CLOCK_REALTIME, &ts); return ts.tv_sec + ts.tv_nsec * 1e-9; } #endif
struct timeval tv; gettimeofday (&tv, 0); return tv.tv_sec + tv.tv_usec * 1e-6; } #endif
inline_size ev_tstamp get_clock (void) { #if EV_USE_MONOTONIC
if (expect_true (have_monotonic)) { struct timespec ts; clock_gettime (CLOCK_MONOTONIC, &ts); return ts.tv_sec + ts.tv_nsec * 1e-9; } #endif
return ev_time (); }
#if EV_MULTIPLICITY
ev_tstamp ev_now (EV_P) EV_THROW { return ev_rt_now; } #endif
void ev_sleep (ev_tstamp delay) EV_THROW { if (delay > 0.) { #if EV_USE_NANOSLEEP
struct timespec ts;
EV_TS_SET (ts, delay); nanosleep (&ts, 0); #elif defined _WIN32
Sleep ((unsigned long)(delay * 1e3)); #else
struct timeval tv;
/* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ /* something not guaranteed by newer posix versions, but guaranteed */ /* by older ones */ EV_TV_SET (tv, delay); select (0, 0, 0, 0, &tv); #endif
} }
/*****************************************************************************/
#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
/* find a suitable new size for the given array, */ /* hopefully by rounding to a nice-to-malloc size */ inline_size int array_nextsize (int elem, int cur, int cnt) { int ncur = cur + 1;
do ncur <<= 1; while (cnt > ncur);
/* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */ if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) { ncur *= elem; ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); ncur = ncur - sizeof (void *) * 4; ncur /= elem; }
return ncur; }
static void * noinline ecb_cold array_realloc (int elem, void *base, int *cur, int cnt) { *cur = array_nextsize (elem, *cur, cnt); return ev_realloc (base, elem * *cur); }
#define array_init_zero(base,count) \
memset ((void *)(base), 0, sizeof (*(base)) * (count))
#define array_needsize(type,base,cur,cnt,init) \
if (expect_false ((cnt) > (cur))) \ { \ int ecb_unused ocur_ = (cur); \ (base) = (type *)array_realloc \ (sizeof (type), (base), &(cur), (cnt)); \ init ((base) + (ocur_), (cur) - ocur_); \ }
#if 0
#define array_slim(type,stem) \
if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ { \ stem ## max = array_roundsize (stem ## cnt >> 1); \ base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ } #endif
#define array_free(stem, idx) \
ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
/*****************************************************************************/
/* dummy callback for pending events */ static void noinline pendingcb (EV_P_ ev_prepare *w, int revents) { }
void noinline ev_feed_event (EV_P_ void *w, int revents) EV_THROW { W w_ = (W)w; int pri = ABSPRI (w_);
if (expect_false (w_->pending)) pendings [pri][w_->pending - 1].events |= revents; else { w_->pending = ++pendingcnt [pri]; array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); pendings [pri][w_->pending - 1].w = w_; pendings [pri][w_->pending - 1].events = revents; }
pendingpri = NUMPRI - 1; }
inline_speed void feed_reverse (EV_P_ W w) { array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2); rfeeds [rfeedcnt++] = w; }
inline_size void feed_reverse_done (EV_P_ int revents) { do ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents); while (rfeedcnt); }
inline_speed void queue_events (EV_P_ W *events, int eventcnt, int type) { int i;
for (i = 0; i < eventcnt; ++i) ev_feed_event (EV_A_ events [i], type); }
/*****************************************************************************/
inline_speed void fd_event_nocheck (EV_P_ int fd, int revents) { ANFD *anfd = anfds + fd; ev_io *w;
for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) { int ev = w->events & revents;
if (ev) ev_feed_event (EV_A_ (W)w, ev); } }
/* do not submit kernel events for fds that have reify set */ /* because that means they changed while we were polling for new events */ inline_speed void fd_event (EV_P_ int fd, int revents) { ANFD *anfd = anfds + fd;
if (expect_true (!anfd->reify)) fd_event_nocheck (EV_A_ fd, revents); }
void ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW { if (fd >= 0 && fd < anfdmax) fd_event_nocheck (EV_A_ fd, revents); }
/* make sure the external fd watch events are in-sync */ /* with the kernel/libev internal state */ inline_size void fd_reify (EV_P) { int i;
#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
for (i = 0; i < fdchangecnt; ++i) { int fd = fdchanges [i]; ANFD *anfd = anfds + fd;
if (anfd->reify & EV__IOFDSET && anfd->head) { SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
if (handle != anfd->handle) { unsigned long arg;
assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
/* handle changed, but fd didn't - we need to do it in two steps */ backend_modify (EV_A_ fd, anfd->events, 0); anfd->events = 0; anfd->handle = handle; } } } #endif
for (i = 0; i < fdchangecnt; ++i) { int fd = fdchanges [i]; ANFD *anfd = anfds + fd; ev_io *w;
unsigned char o_events = anfd->events; unsigned char o_reify = anfd->reify;
anfd->reify = 0;
/*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */ { anfd->events = 0;
for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) anfd->events |= (unsigned char)w->events;
if (o_events != anfd->events) o_reify = EV__IOFDSET; /* actually |= */ }
if (o_reify & EV__IOFDSET) backend_modify (EV_A_ fd, o_events, anfd->events); }
fdchangecnt = 0; }
/* something about the given fd changed */ inline_size void fd_change (EV_P_ int fd, int flags) { unsigned char reify = anfds [fd].reify; anfds [fd].reify |= flags;
if (expect_true (!reify)) { ++fdchangecnt; array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); fdchanges [fdchangecnt - 1] = fd; } }
/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */ inline_speed void ecb_cold fd_kill (EV_P_ int fd) { ev_io *w;
while ((w = (ev_io *)anfds [fd].head)) { ev_io_stop (EV_A_ w); ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); } }
/* check whether the given fd is actually valid, for error recovery */ inline_size int ecb_cold fd_valid (int fd) { #ifdef _WIN32
return EV_FD_TO_WIN32_HANDLE (fd) != -1; #else
return fcntl (fd, F_GETFD) != -1; #endif
}
/* called on EBADF to verify fds */ static void noinline ecb_cold fd_ebadf (EV_P) { int fd;
for (fd = 0; fd < anfdmax; ++fd) if (anfds [fd].events) if (!fd_valid (fd) && errno == EBADF) fd_kill (EV_A_ fd); }
/* called on ENOMEM in select/poll to kill some fds and retry */ static void noinline ecb_cold fd_enomem (EV_P) { int fd;
for (fd = anfdmax; fd--; ) if (anfds [fd].events) { fd_kill (EV_A_ fd); break; } }
/* usually called after fork if backend needs to re-arm all fds from scratch */ static void noinline fd_rearm_all (EV_P) { int fd;
for (fd = 0; fd < anfdmax; ++fd) if (anfds [fd].events) { anfds [fd].events = 0; anfds [fd].emask = 0; fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY); } }
/* used to prepare libev internal fd's */ /* this is not fork-safe */ inline_speed void fd_intern (int fd) { #ifdef _WIN32
unsigned long arg = 1; ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg); #else
fcntl (fd, F_SETFD, FD_CLOEXEC); fcntl (fd, F_SETFL, O_NONBLOCK); #endif
}
/*****************************************************************************/
/*
* the heap functions want a real array index. array index 0 is guaranteed to not * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives * the branching factor of the d-tree. */
/*
* at the moment we allow libev the luxury of two heaps, * a small-code-size 2-heap one and a ~1.5kb larger 4-heap * which is more cache-efficient. * the difference is about 5% with 50000+ watchers. */ #if EV_USE_4HEAP
#define DHEAP 4
#define HEAP0 (DHEAP - 1) /* index of first element in heap */
#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
#define UPHEAP_DONE(p,k) ((p) == (k))
/* away from the root */ inline_speed void downheap (ANHE *heap, int N, int k) { ANHE he = heap [k]; ANHE *E = heap + N + HEAP0;
for (;;) { ev_tstamp minat; ANHE *minpos; ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
/* find minimum child */ if (expect_true (pos + DHEAP - 1 < E)) { /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); } else if (pos < E) { /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); } else break;
if (ANHE_at (he) <= minat) break;
heap [k] = *minpos; ev_active (ANHE_w (*minpos)) = k;
k = minpos - heap; }
heap [k] = he; ev_active (ANHE_w (he)) = k; }
#else /* 4HEAP */
#define HEAP0 1
#define HPARENT(k) ((k) >> 1)
#define UPHEAP_DONE(p,k) (!(p))
/* away from the root */ inline_speed void downheap (ANHE *heap, int N, int k) { ANHE he = heap [k];
for (;;) { int c = k << 1;
if (c >= N + HEAP0) break;
c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) ? 1 : 0;
if (ANHE_at (he) <= ANHE_at (heap [c])) break;
heap [k] = heap [c]; ev_active (ANHE_w (heap [k])) = k; k = c; }
heap [k] = he; ev_active (ANHE_w (he)) = k; } #endif
/* towards the root */ inline_speed void upheap (ANHE *heap, int k) { ANHE he = heap [k];
for (;;) { int p = HPARENT (k);
if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he)) break;
heap [k] = heap [p]; ev_active (ANHE_w (heap [k])) = k; k = p; }
heap [k] = he; ev_active (ANHE_w (he)) = k; }
/* move an element suitably so it is in a correct place */ inline_size void adjustheap (ANHE *heap, int N, int k) { if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)])) upheap (heap, k); else downheap (heap, N, k); }
/* rebuild the heap: this function is used only once and executed rarely */ inline_size void reheap (ANHE *heap, int N) { int i;
/* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */ for (i = 0; i < N; ++i) upheap (heap, i + HEAP0); }
/*****************************************************************************/
/* associate signal watchers to a signal signal */ typedef struct { EV_ATOMIC_T pending; #if EV_MULTIPLICITY
EV_P; #endif
WL head; } ANSIG;
static ANSIG signals [EV_NSIG - 1];
/*****************************************************************************/
#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
static void noinline ecb_cold evpipe_init (EV_P) { if (!ev_is_active (&pipe_w)) { int fds [2];
# if EV_USE_EVENTFD
fds [0] = -1; fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC); if (fds [1] < 0 && errno == EINVAL) fds [1] = eventfd (0, 0);
if (fds [1] < 0) # endif
{ while (pipe (fds)) ev_syserr ("(libev) error creating signal/async pipe");
fd_intern (fds [0]); }
evpipe [0] = fds [0];
if (evpipe [1] < 0) evpipe [1] = fds [1]; /* first call, set write fd */ else { /* on subsequent calls, do not change evpipe [1] */ /* so that evpipe_write can always rely on its value. */ /* this branch does not do anything sensible on windows, */ /* so must not be executed on windows */
dup2 (fds [1], evpipe [1]); close (fds [1]); }
fd_intern (evpipe [1]);
ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ); ev_io_start (EV_A_ &pipe_w); ev_unref (EV_A); /* watcher should not keep loop alive */ } }
inline_speed void evpipe_write (EV_P_ EV_ATOMIC_T *flag) { ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
if (expect_true (*flag)) return;
*flag = 1; ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
pipe_write_skipped = 1;
ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
if (pipe_write_wanted) { int old_errno;
pipe_write_skipped = 0; ECB_MEMORY_FENCE_RELEASE;
old_errno = errno; /* save errno because write will clobber it */
#if EV_USE_EVENTFD
if (evpipe [0] < 0) { uint64_t counter = 1; write (evpipe [1], &counter, sizeof (uint64_t)); } else #endif
{ #ifdef _WIN32
WSABUF buf; DWORD sent; buf.buf = &buf; buf.len = 1; WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0); #else
write (evpipe [1], &(evpipe [1]), 1); #endif
}
errno = old_errno; } }
/* called whenever the libev signal pipe */ /* got some events (signal, async) */ static void pipecb (EV_P_ ev_io *iow, int revents) { int i;
if (revents & EV_READ) { #if EV_USE_EVENTFD
if (evpipe [0] < 0) { uint64_t counter; read (evpipe [1], &counter, sizeof (uint64_t)); } else #endif
{ char dummy[4]; #ifdef _WIN32
WSABUF buf; DWORD recvd; DWORD flags = 0; buf.buf = dummy; buf.len = sizeof (dummy); WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0); #else
read (evpipe [0], &dummy, sizeof (dummy)); #endif
} }
pipe_write_skipped = 0;
ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
#if EV_SIGNAL_ENABLE
if (sig_pending) { sig_pending = 0;
ECB_MEMORY_FENCE;
for (i = EV_NSIG - 1; i--; ) if (expect_false (signals [i].pending)) ev_feed_signal_event (EV_A_ i + 1); } #endif
#if EV_ASYNC_ENABLE
if (async_pending) { async_pending = 0;
ECB_MEMORY_FENCE;
for (i = asynccnt; i--; ) if (asyncs [i]->sent) { asyncs [i]->sent = 0; ECB_MEMORY_FENCE_RELEASE; ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); } } #endif
}
/*****************************************************************************/
void ev_feed_signal (int signum) EV_THROW { #if EV_MULTIPLICITY
EV_P; ECB_MEMORY_FENCE_ACQUIRE; EV_A = signals [signum - 1].loop;
if (!EV_A) return; #endif
signals [signum - 1].pending = 1; evpipe_write (EV_A_ &sig_pending); }
static void ev_sighandler (int signum) { #ifdef _WIN32
signal (signum, ev_sighandler); #endif
ev_feed_signal (signum); }
void noinline ev_feed_signal_event (EV_P_ int signum) EV_THROW { WL w;
if (expect_false (signum <= 0 || signum >= EV_NSIG)) return;
--signum;
#if EV_MULTIPLICITY
/* it is permissible to try to feed a signal to the wrong loop */ /* or, likely more useful, feeding a signal nobody is waiting for */
if (expect_false (signals [signum].loop != EV_A)) return; #endif
signals [signum].pending = 0; ECB_MEMORY_FENCE_RELEASE;
for (w = signals [signum].head; w; w = w->next) ev_feed_event (EV_A_ (W)w, EV_SIGNAL); }
#if EV_USE_SIGNALFD
static void sigfdcb (EV_P_ ev_io *iow, int revents) { struct signalfd_siginfo si[2], *sip; /* these structs are big */
for (;;) { ssize_t res = read (sigfd, si, sizeof (si));
/* not ISO-C, as res might be -1, but works with SuS */ for (sip = si; (char *)sip < (char *)si + res; ++sip) ev_feed_signal_event (EV_A_ sip->ssi_signo);
if (res < (ssize_t)sizeof (si)) break; } } #endif
#endif
/*****************************************************************************/
#if EV_CHILD_ENABLE
static WL childs [EV_PID_HASHSIZE];
static ev_signal childev;
#ifndef WIFCONTINUED
# define WIFCONTINUED(status) 0
#endif
/* handle a single child status event */ inline_speed void child_reap (EV_P_ int chain, int pid, int status) { ev_child *w; int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next) { if ((w->pid == pid || !w->pid) && (!traced || (w->flags & 1))) { ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ w->rpid = pid; w->rstatus = status; ev_feed_event (EV_A_ (W)w, EV_CHILD); } } }
#ifndef WCONTINUED
# define WCONTINUED 0
#endif
/* called on sigchld etc., calls waitpid */ static void childcb (EV_P_ ev_signal *sw, int revents) { int pid, status;
/* some systems define WCONTINUED but then fail to support it (linux 2.4) */ if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) if (!WCONTINUED || errno != EINVAL || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) return;
/* make sure we are called again until all children have been reaped */ /* we need to do it this way so that the callback gets called before we continue */ ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
child_reap (EV_A_ pid, pid, status); if ((EV_PID_HASHSIZE) > 1) child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ }
#endif
/*****************************************************************************/
#if EV_USE_IOCP
# include "ev_iocp.c"
#endif
#if EV_USE_PORT
# include "ev_port.c"
#endif
#if EV_USE_KQUEUE
# include "ev_kqueue.c"
#endif
#if EV_USE_EPOLL
# include "ev_epoll.c"
#endif
#if EV_USE_POLL
# include "ev_poll.c"
#endif
#if EV_USE_SELECT
# include "ev_select.c"
#endif
int ecb_cold ev_version_major (void) EV_THROW { return EV_VERSION_MAJOR; }
int ecb_cold ev_version_minor (void) EV_THROW { return EV_VERSION_MINOR; }
/* return true if we are running with elevated privileges and should ignore env variables */ int inline_size ecb_cold enable_secure (void) { #ifdef _WIN32
return 0; #else
return getuid () != geteuid () || getgid () != getegid (); #endif
}
unsigned int ecb_cold ev_supported_backends (void) EV_THROW { unsigned int flags = 0;
if (EV_USE_PORT ) flags |= EVBACKEND_PORT; if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; if (EV_USE_POLL ) flags |= EVBACKEND_POLL; if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; return flags; }
unsigned int ecb_cold ev_recommended_backends (void) EV_THROW { unsigned int flags = ev_supported_backends ();
#if !defined(__NetBSD__) && !defined(__FreeBSD__)
/* kqueue is borked on everything but netbsd apparently */ /* it usually doesn't work correctly on anything but sockets and pipes */ flags &= ~EVBACKEND_KQUEUE; #endif
#ifdef __APPLE__
/* only select works correctly on that "unix-certified" platform */ flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ #endif
#ifdef __FreeBSD__
flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */ #endif
return flags; }
unsigned int ecb_cold ev_embeddable_backends (void) EV_THROW { int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
/* epoll embeddability broken on all linux versions up to at least 2.6.23 */ if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */ flags &= ~EVBACKEND_EPOLL;
return flags; }
unsigned int ev_backend (EV_P) EV_THROW { return backend; }
#if EV_FEATURE_API
unsigned int ev_iteration (EV_P) EV_THROW { return loop_count; }
unsigned int ev_depth (EV_P) EV_THROW { return loop_depth; }
void ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW { io_blocktime = interval; }
void ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW { timeout_blocktime = interval; }
void ev_set_userdata (EV_P_ void *data) EV_THROW { userdata = data; }
void * ev_userdata (EV_P) EV_THROW { return userdata; }
void ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW { invoke_cb = invoke_pending_cb; }
void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW { release_cb = release; acquire_cb = acquire; } #endif
/* initialise a loop structure, must be zero-initialised */ static void noinline ecb_cold loop_init (EV_P_ unsigned int flags) EV_THROW { if (!backend) { origflags = flags;
#if EV_USE_REALTIME
if (!have_realtime) { struct timespec ts;
if (!clock_gettime (CLOCK_REALTIME, &ts)) have_realtime = 1; } #endif
#if EV_USE_MONOTONIC
if (!have_monotonic) { struct timespec ts;
if (!clock_gettime (CLOCK_MONOTONIC, &ts)) have_monotonic = 1; } #endif
/* pid check not overridable via env */ #ifndef _WIN32
if (flags & EVFLAG_FORKCHECK) curpid = getpid (); #endif
if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) flags = atoi (getenv ("LIBEV_FLAGS"));
ev_rt_now = ev_time (); mn_now = get_clock (); now_floor = mn_now; rtmn_diff = ev_rt_now - mn_now; #if EV_FEATURE_API
invoke_cb = ev_invoke_pending; #endif
io_blocktime = 0.; timeout_blocktime = 0.; backend = 0; backend_fd = -1; sig_pending = 0; #if EV_ASYNC_ENABLE
async_pending = 0; #endif
pipe_write_skipped = 0; pipe_write_wanted = 0; evpipe [0] = -1; evpipe [1] = -1; #if EV_USE_INOTIFY
fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2; #endif
#if EV_USE_SIGNALFD
sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1; #endif
if (!(flags & EVBACKEND_MASK)) flags |= ev_recommended_backends ();
#if EV_USE_IOCP
if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags); #endif
#if EV_USE_PORT
if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); #endif
#if EV_USE_KQUEUE
if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); #endif
#if EV_USE_EPOLL
if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); #endif
#if EV_USE_POLL
if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); #endif
#if EV_USE_SELECT
if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); #endif
ev_prepare_init (&pending_w, pendingcb);
#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
ev_init (&pipe_w, pipecb); ev_set_priority (&pipe_w, EV_MAXPRI); #endif
} }
/* free up a loop structure */ void ecb_cold ev_loop_destroy (EV_P) { int i;
#if EV_MULTIPLICITY
/* mimic free (0) */ if (!EV_A) return; #endif
#if EV_CLEANUP_ENABLE
/* queue cleanup watchers (and execute them) */ if (expect_false (cleanupcnt)) { queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP); EV_INVOKE_PENDING; } #endif
#if EV_CHILD_ENABLE
if (ev_is_default_loop (EV_A) && ev_is_active (&childev)) { ev_ref (EV_A); /* child watcher */ ev_signal_stop (EV_A_ &childev); } #endif
if (ev_is_active (&pipe_w)) { /*ev_ref (EV_A);*/ /*ev_io_stop (EV_A_ &pipe_w);*/
if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]); if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]); }
#if EV_USE_SIGNALFD
if (ev_is_active (&sigfd_w)) close (sigfd); #endif
#if EV_USE_INOTIFY
if (fs_fd >= 0) close (fs_fd); #endif
if (backend_fd >= 0) close (backend_fd);
#if EV_USE_IOCP
if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A); #endif
#if EV_USE_PORT
if (backend == EVBACKEND_PORT ) port_destroy (EV_A); #endif
#if EV_USE_KQUEUE
if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); #endif
#if EV_USE_EPOLL
if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); #endif
#if EV_USE_POLL
if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); #endif
#if EV_USE_SELECT
if (backend == EVBACKEND_SELECT) select_destroy (EV_A); #endif
for (i = NUMPRI; i--; ) { array_free (pending, [i]); #if EV_IDLE_ENABLE
array_free (idle, [i]); #endif
}
ev_free (anfds); anfds = 0; anfdmax = 0;
/* have to use the microsoft-never-gets-it-right macro */ array_free (rfeed, EMPTY); array_free (fdchange, EMPTY); array_free (timer, EMPTY); #if EV_PERIODIC_ENABLE
array_free (periodic, EMPTY); #endif
#if EV_FORK_ENABLE
array_free (fork, EMPTY); #endif
#if EV_CLEANUP_ENABLE
array_free (cleanup, EMPTY); #endif
array_free (prepare, EMPTY); array_free (check, EMPTY); #if EV_ASYNC_ENABLE
array_free (async, EMPTY); #endif
backend = 0;
#if EV_MULTIPLICITY
if (ev_is_default_loop (EV_A)) #endif
ev_default_loop_ptr = 0; #if EV_MULTIPLICITY
else ev_free (EV_A); #endif
}
#if EV_USE_INOTIFY
inline_size void infy_fork (EV_P); #endif
inline_size void loop_fork (EV_P) { #if EV_USE_PORT
if (backend == EVBACKEND_PORT ) port_fork (EV_A); #endif
#if EV_USE_KQUEUE
if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); #endif
#if EV_USE_EPOLL
if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); #endif
#if EV_USE_INOTIFY
infy_fork (EV_A); #endif
#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
if (ev_is_active (&pipe_w)) { /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
ev_ref (EV_A); ev_io_stop (EV_A_ &pipe_w);
if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
evpipe_init (EV_A); /* iterate over everything, in case we missed something before */ ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM); } #endif
postfork = 0; }
#if EV_MULTIPLICITY
struct ev_loop * ecb_cold ev_loop_new (unsigned int flags) EV_THROW { EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
memset (EV_A, 0, sizeof (struct ev_loop)); loop_init (EV_A_ flags);
if (ev_backend (EV_A)) return EV_A;
ev_free (EV_A); return 0; }
#endif /* multiplicity */
#if EV_VERIFY
static void noinline ecb_cold verify_watcher (EV_P_ W w) { assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
if (w->pending) assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); }
static void noinline ecb_cold verify_heap (EV_P_ ANHE *heap, int N) { int i;
for (i = HEAP0; i < N + HEAP0; ++i) { assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
verify_watcher (EV_A_ (W)ANHE_w (heap [i])); } }
static void noinline ecb_cold array_verify (EV_P_ W *ws, int cnt) { while (cnt--) { assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); verify_watcher (EV_A_ ws [cnt]); } } #endif
#if EV_FEATURE_API
void ecb_cold ev_verify (EV_P) EV_THROW { #if EV_VERIFY
int i; WL w, w2;
assert (activecnt >= -1);
assert (fdchangemax >= fdchangecnt); for (i = 0; i < fdchangecnt; ++i) assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
assert (anfdmax >= 0); for (i = 0; i < anfdmax; ++i) { int j = 0;
for (w = w2 = anfds [i].head; w; w = w->next) { verify_watcher (EV_A_ (W)w);
if (j++ & 1) { assert (("libev: io watcher list contains a loop", w != w2)); w2 = w2->next; }
assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); } }
assert (timermax >= timercnt); verify_heap (EV_A_ timers, timercnt);
#if EV_PERIODIC_ENABLE
assert (periodicmax >= periodiccnt); verify_heap (EV_A_ periodics, periodiccnt); #endif
for (i = NUMPRI; i--; ) { assert (pendingmax [i] >= pendingcnt [i]); #if EV_IDLE_ENABLE
assert (idleall >= 0); assert (idlemax [i] >= idlecnt [i]); array_verify (EV_A_ (W *)idles [i], idlecnt [i]); #endif
}
#if EV_FORK_ENABLE
assert (forkmax >= forkcnt); array_verify (EV_A_ (W *)forks, forkcnt); #endif
#if EV_CLEANUP_ENABLE
assert (cleanupmax >= cleanupcnt); array_verify (EV_A_ (W *)cleanups, cleanupcnt); #endif
#if EV_ASYNC_ENABLE
assert (asyncmax >= asynccnt); array_verify (EV_A_ (W *)asyncs, asynccnt); #endif
#if EV_PREPARE_ENABLE
assert (preparemax >= preparecnt); array_verify (EV_A_ (W *)prepares, preparecnt); #endif
#if EV_CHECK_ENABLE
assert (checkmax >= checkcnt); array_verify (EV_A_ (W *)checks, checkcnt); #endif
# if 0
#if EV_CHILD_ENABLE
for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next) for (signum = EV_NSIG; signum--; ) if (signals [signum].pending) #endif
# endif
#endif
} #endif
#if EV_MULTIPLICITY
struct ev_loop * ecb_cold #else
int #endif
ev_default_loop (unsigned int flags) EV_THROW { if (!ev_default_loop_ptr) { #if EV_MULTIPLICITY
EV_P = ev_default_loop_ptr = &default_loop_struct; #else
ev_default_loop_ptr = 1; #endif
loop_init (EV_A_ flags);
if (ev_backend (EV_A)) { #if EV_CHILD_ENABLE
ev_signal_init (&childev, childcb, SIGCHLD); ev_set_priority (&childev, EV_MAXPRI); ev_signal_start (EV_A_ &childev); ev_unref (EV_A); /* child watcher should not keep loop alive */ #endif
} else ev_default_loop_ptr = 0; }
return ev_default_loop_ptr; }
void ev_loop_fork (EV_P) EV_THROW { postfork = 1; }
/*****************************************************************************/
void ev_invoke (EV_P_ void *w, int revents) { EV_CB_INVOKE ((W)w, revents); }
unsigned int ev_pending_count (EV_P) EV_THROW { int pri; unsigned int count = 0;
for (pri = NUMPRI; pri--; ) count += pendingcnt [pri];
return count; }
void noinline ev_invoke_pending (EV_P) { pendingpri = NUMPRI;
while (pendingpri) /* pendingpri possibly gets modified in the inner loop */ { --pendingpri;
while (pendingcnt [pendingpri]) { ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
p->w->pending = 0; EV_CB_INVOKE (p->w, p->events); EV_FREQUENT_CHECK; } } }
#if EV_IDLE_ENABLE
/* make idle watchers pending. this handles the "call-idle */ /* only when higher priorities are idle" logic */ inline_size void idle_reify (EV_P) { if (expect_false (idleall)) { int pri;
for (pri = NUMPRI; pri--; ) { if (pendingcnt [pri]) break;
if (idlecnt [pri]) { queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); break; } } } } #endif
/* make timers pending */ inline_size void timers_reify (EV_P) { EV_FREQUENT_CHECK;
if (timercnt && ANHE_at (timers [HEAP0]) < mn_now) { do { ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
/*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
/* first reschedule or stop timer */ if (w->repeat) { ev_at (w) += w->repeat; if (ev_at (w) < mn_now) ev_at (w) = mn_now;
assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
ANHE_at_cache (timers [HEAP0]); downheap (timers, timercnt, HEAP0); } else ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
EV_FREQUENT_CHECK; feed_reverse (EV_A_ (W)w); } while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
feed_reverse_done (EV_A_ EV_TIMER); } }
#if EV_PERIODIC_ENABLE
static void noinline periodic_recalc (EV_P_ ev_periodic *w) { ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL; ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
/* the above almost always errs on the low side */ while (at <= ev_rt_now) { ev_tstamp nat = at + w->interval;
/* when resolution fails us, we use ev_rt_now */ if (expect_false (nat == at)) { at = ev_rt_now; break; }
at = nat; }
ev_at (w) = at; }
/* make periodics pending */ inline_size void periodics_reify (EV_P) { EV_FREQUENT_CHECK;
while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) { do { ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
/*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
/* first reschedule or stop timer */ if (w->reschedule_cb) { ev_at (w) = w->reschedule_cb (w, ev_rt_now);
assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
ANHE_at_cache (periodics [HEAP0]); downheap (periodics, periodiccnt, HEAP0); } else if (w->interval) { periodic_recalc (EV_A_ w); ANHE_at_cache (periodics [HEAP0]); downheap (periodics, periodiccnt, HEAP0); } else ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
EV_FREQUENT_CHECK; feed_reverse (EV_A_ (W)w); } while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
feed_reverse_done (EV_A_ EV_PERIODIC); } }
/* simply recalculate all periodics */ /* TODO: maybe ensure that at least one event happens when jumping forward? */ static void noinline ecb_cold periodics_reschedule (EV_P) { int i;
/* adjust periodics after time jump */ for (i = HEAP0; i < periodiccnt + HEAP0; ++i) { ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
if (w->reschedule_cb) ev_at (w) = w->reschedule_cb (w, ev_rt_now); else if (w->interval) periodic_recalc (EV_A_ w);
ANHE_at_cache (periodics [i]); }
reheap (periodics, periodiccnt); } #endif
/* adjust all timers by a given offset */ static void noinline ecb_cold timers_reschedule (EV_P_ ev_tstamp adjust) { int i;
for (i = 0; i < timercnt; ++i) { ANHE *he = timers + i + HEAP0; ANHE_w (*he)->at += adjust; ANHE_at_cache (*he); } }
/* fetch new monotonic and realtime times from the kernel */ /* also detect if there was a timejump, and act accordingly */ inline_speed void time_update (EV_P_ ev_tstamp max_block) { #if EV_USE_MONOTONIC
if (expect_true (have_monotonic)) { int i; ev_tstamp odiff = rtmn_diff;
mn_now = get_clock ();
/* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ /* interpolate in the meantime */ if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) { ev_rt_now = rtmn_diff + mn_now; return; }
now_floor = mn_now; ev_rt_now = ev_time ();
/* loop a few times, before making important decisions.
* on the choice of "4": one iteration isn't enough, * in case we get preempted during the calls to * ev_time and get_clock. a second call is almost guaranteed * to succeed in that case, though. and looping a few more times * doesn't hurt either as we only do this on time-jumps or * in the unlikely event of having been preempted here. */ for (i = 4; --i; ) { ev_tstamp diff; rtmn_diff = ev_rt_now - mn_now;
diff = odiff - rtmn_diff;
if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP)) return; /* all is well */
ev_rt_now = ev_time (); mn_now = get_clock (); now_floor = mn_now; }
/* no timer adjustment, as the monotonic clock doesn't jump */ /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ # if EV_PERIODIC_ENABLE
periodics_reschedule (EV_A); # endif
} else #endif
{ ev_rt_now = ev_time ();
if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) { /* adjust timers. this is easy, as the offset is the same for all of them */ timers_reschedule (EV_A_ ev_rt_now - mn_now); #if EV_PERIODIC_ENABLE
periodics_reschedule (EV_A); #endif
}
mn_now = ev_rt_now; } }
int ev_run (EV_P_ int flags) { #if EV_FEATURE_API
++loop_depth; #endif
assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
loop_done = EVBREAK_CANCEL;
EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
do { #if EV_VERIFY >= 2
ev_verify (EV_A); #endif
#ifndef _WIN32
if (expect_false (curpid)) /* penalise the forking check even more */ if (expect_false (getpid () != curpid)) { curpid = getpid (); postfork = 1; } #endif
#if EV_FORK_ENABLE
/* we might have forked, so queue fork handlers */ if (expect_false (postfork)) if (forkcnt) { queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); EV_INVOKE_PENDING; } #endif
#if EV_PREPARE_ENABLE
/* queue prepare watchers (and execute them) */ if (expect_false (preparecnt)) { queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); EV_INVOKE_PENDING; } #endif
if (expect_false (loop_done)) break;
/* we might have forked, so reify kernel state if necessary */ if (expect_false (postfork)) loop_fork (EV_A);
/* update fd-related kernel structures */ fd_reify (EV_A);
/* calculate blocking time */ { ev_tstamp waittime = 0.; ev_tstamp sleeptime = 0.;
/* remember old timestamp for io_blocktime calculation */ ev_tstamp prev_mn_now = mn_now;
/* update time to cancel out callback processing overhead */ time_update (EV_A_ 1e100);
/* from now on, we want a pipe-wake-up */ pipe_write_wanted = 1;
ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped))) { waittime = MAX_BLOCKTIME;
if (timercnt) { ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now; if (waittime > to) waittime = to; }
#if EV_PERIODIC_ENABLE
if (periodiccnt) { ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now; if (waittime > to) waittime = to; } #endif
/* don't let timeouts decrease the waittime below timeout_blocktime */ if (expect_false (waittime < timeout_blocktime)) waittime = timeout_blocktime;
/* at this point, we NEED to wait, so we have to ensure */ /* to pass a minimum nonzero value to the backend */ if (expect_false (waittime < backend_mintime)) waittime = backend_mintime;
/* extra check because io_blocktime is commonly 0 */ if (expect_false (io_blocktime)) { sleeptime = io_blocktime - (mn_now - prev_mn_now);
if (sleeptime > waittime - backend_mintime) sleeptime = waittime - backend_mintime;
if (expect_true (sleeptime > 0.)) { ev_sleep (sleeptime); waittime -= sleeptime; } } }
#if EV_FEATURE_API
++loop_count; #endif
assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */ backend_poll (EV_A_ waittime); assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
pipe_write_wanted = 0; /* just an optimisation, no fence needed */
ECB_MEMORY_FENCE_ACQUIRE; if (pipe_write_skipped) { assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w))); ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM); }
/* update ev_rt_now, do magic */ time_update (EV_A_ waittime + sleeptime); }
/* queue pending timers and reschedule them */ timers_reify (EV_A); /* relative timers called last */ #if EV_PERIODIC_ENABLE
periodics_reify (EV_A); /* absolute timers called first */ #endif
#if EV_IDLE_ENABLE
/* queue idle watchers unless other events are pending */ idle_reify (EV_A); #endif
#if EV_CHECK_ENABLE
/* queue check watchers, to be executed first */ if (expect_false (checkcnt)) queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); #endif
EV_INVOKE_PENDING; } while (expect_true ( activecnt && !loop_done && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT)) ));
if (loop_done == EVBREAK_ONE) loop_done = EVBREAK_CANCEL;
#if EV_FEATURE_API
--loop_depth; #endif
return activecnt; }
void ev_break (EV_P_ int how) EV_THROW { loop_done = how; }
void ev_ref (EV_P) EV_THROW { ++activecnt; }
void ev_unref (EV_P) EV_THROW { --activecnt; }
void ev_now_update (EV_P) EV_THROW { time_update (EV_A_ 1e100); }
void ev_suspend (EV_P) EV_THROW { ev_now_update (EV_A); }
void ev_resume (EV_P) EV_THROW { ev_tstamp mn_prev = mn_now;
ev_now_update (EV_A); timers_reschedule (EV_A_ mn_now - mn_prev); #if EV_PERIODIC_ENABLE
/* TODO: really do this? */ periodics_reschedule (EV_A); #endif
}
/*****************************************************************************/ /* singly-linked list management, used when the expected list length is short */
inline_size void wlist_add (WL *head, WL elem) { elem->next = *head; *head = elem; }
inline_size void wlist_del (WL *head, WL elem) { while (*head) { if (expect_true (*head == elem)) { *head = elem->next; break; }
head = &(*head)->next; } }
/* internal, faster, version of ev_clear_pending */ inline_speed void clear_pending (EV_P_ W w) { if (w->pending) { pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w; w->pending = 0; } }
int ev_clear_pending (EV_P_ void *w) EV_THROW { W w_ = (W)w; int pending = w_->pending;
if (expect_true (pending)) { ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; p->w = (W)&pending_w; w_->pending = 0; return p->events; } else return 0; }
inline_size void pri_adjust (EV_P_ W w) { int pri = ev_priority (w); pri = pri < EV_MINPRI ? EV_MINPRI : pri; pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; ev_set_priority (w, pri); }
inline_speed void ev_start (EV_P_ W w, int active) { pri_adjust (EV_A_ w); w->active = active; ev_ref (EV_A); }
inline_size void ev_stop (EV_P_ W w) { ev_unref (EV_A); w->active = 0; }
/*****************************************************************************/
void noinline ev_io_start (EV_P_ ev_io *w) EV_THROW { int fd = w->fd;
if (expect_false (ev_is_active (w))) return;
assert (("libev: ev_io_start called with negative fd", fd >= 0)); assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
EV_FREQUENT_CHECK;
ev_start (EV_A_ (W)w, 1); array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); wlist_add (&anfds[fd].head, (WL)w);
/* common bug, apparently */ assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY); w->events &= ~EV__IOFDSET;
EV_FREQUENT_CHECK; }
void noinline ev_io_stop (EV_P_ ev_io *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return;
assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
EV_FREQUENT_CHECK;
wlist_del (&anfds[w->fd].head, (WL)w); ev_stop (EV_A_ (W)w);
fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
EV_FREQUENT_CHECK; }
void noinline ev_timer_start (EV_P_ ev_timer *w) EV_THROW { if (expect_false (ev_is_active (w))) return;
ev_at (w) += mn_now;
assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
EV_FREQUENT_CHECK;
++timercnt; ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); ANHE_w (timers [ev_active (w)]) = (WT)w; ANHE_at_cache (timers [ev_active (w)]); upheap (timers, ev_active (w));
EV_FREQUENT_CHECK;
/*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ }
void noinline ev_timer_stop (EV_P_ ev_timer *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return;
EV_FREQUENT_CHECK;
{ int active = ev_active (w);
assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
--timercnt;
if (expect_true (active < timercnt + HEAP0)) { timers [active] = timers [timercnt + HEAP0]; adjustheap (timers, timercnt, active); } }
ev_at (w) -= mn_now;
ev_stop (EV_A_ (W)w);
EV_FREQUENT_CHECK; }
void noinline ev_timer_again (EV_P_ ev_timer *w) EV_THROW { EV_FREQUENT_CHECK;
clear_pending (EV_A_ (W)w);
if (ev_is_active (w)) { if (w->repeat) { ev_at (w) = mn_now + w->repeat; ANHE_at_cache (timers [ev_active (w)]); adjustheap (timers, timercnt, ev_active (w)); } else ev_timer_stop (EV_A_ w); } else if (w->repeat) { ev_at (w) = w->repeat; ev_timer_start (EV_A_ w); }
EV_FREQUENT_CHECK; }
ev_tstamp ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW { return ev_at (w) - (ev_is_active (w) ? mn_now : 0.); }
#if EV_PERIODIC_ENABLE
void noinline ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW { if (expect_false (ev_is_active (w))) return;
if (w->reschedule_cb) ev_at (w) = w->reschedule_cb (w, ev_rt_now); else if (w->interval) { assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); periodic_recalc (EV_A_ w); } else ev_at (w) = w->offset;
EV_FREQUENT_CHECK;
++periodiccnt; ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); ANHE_w (periodics [ev_active (w)]) = (WT)w; ANHE_at_cache (periodics [ev_active (w)]); upheap (periodics, ev_active (w));
EV_FREQUENT_CHECK;
/*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ }
void noinline ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return;
EV_FREQUENT_CHECK;
{ int active = ev_active (w);
assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
--periodiccnt;
if (expect_true (active < periodiccnt + HEAP0)) { periodics [active] = periodics [periodiccnt + HEAP0]; adjustheap (periodics, periodiccnt, active); } }
ev_stop (EV_A_ (W)w);
EV_FREQUENT_CHECK; }
void noinline ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW { /* TODO: use adjustheap and recalculation */ ev_periodic_stop (EV_A_ w); ev_periodic_start (EV_A_ w); } #endif
#ifndef SA_RESTART
# define SA_RESTART 0
#endif
#if EV_SIGNAL_ENABLE
void noinline ev_signal_start (EV_P_ ev_signal *w) EV_THROW { if (expect_false (ev_is_active (w))) return;
assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
#if EV_MULTIPLICITY
assert (("libev: a signal must not be attached to two different loops", !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
signals [w->signum - 1].loop = EV_A; ECB_MEMORY_FENCE_RELEASE; #endif
EV_FREQUENT_CHECK;
#if EV_USE_SIGNALFD
if (sigfd == -2) { sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC); if (sigfd < 0 && errno == EINVAL) sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
if (sigfd >= 0) { fd_intern (sigfd); /* doing it twice will not hurt */
sigemptyset (&sigfd_set);
ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ); ev_set_priority (&sigfd_w, EV_MAXPRI); ev_io_start (EV_A_ &sigfd_w); ev_unref (EV_A); /* signalfd watcher should not keep loop alive */ } }
if (sigfd >= 0) { /* TODO: check .head */ sigaddset (&sigfd_set, w->signum); sigprocmask (SIG_BLOCK, &sigfd_set, 0);
signalfd (sigfd, &sigfd_set, 0); } #endif
ev_start (EV_A_ (W)w, 1); wlist_add (&signals [w->signum - 1].head, (WL)w);
if (!((WL)w)->next) # if EV_USE_SIGNALFD
if (sigfd < 0) /*TODO*/ # endif
{ # ifdef _WIN32
evpipe_init (EV_A);
signal (w->signum, ev_sighandler); # else
struct sigaction sa;
evpipe_init (EV_A);
sa.sa_handler = ev_sighandler; sigfillset (&sa.sa_mask); sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ sigaction (w->signum, &sa, 0);
if (origflags & EVFLAG_NOSIGMASK) { sigemptyset (&sa.sa_mask); sigaddset (&sa.sa_mask, w->signum); sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0); } #endif
}
EV_FREQUENT_CHECK; }
void noinline ev_signal_stop (EV_P_ ev_signal *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return;
EV_FREQUENT_CHECK;
wlist_del (&signals [w->signum - 1].head, (WL)w); ev_stop (EV_A_ (W)w);
if (!signals [w->signum - 1].head) { #if EV_MULTIPLICITY
signals [w->signum - 1].loop = 0; /* unattach from signal */ #endif
#if EV_USE_SIGNALFD
if (sigfd >= 0) { sigset_t ss;
sigemptyset (&ss); sigaddset (&ss, w->signum); sigdelset (&sigfd_set, w->signum);
signalfd (sigfd, &sigfd_set, 0); sigprocmask (SIG_UNBLOCK, &ss, 0); } else #endif
signal (w->signum, SIG_DFL); }
EV_FREQUENT_CHECK; }
#endif
#if EV_CHILD_ENABLE
void ev_child_start (EV_P_ ev_child *w) EV_THROW { #if EV_MULTIPLICITY
assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); #endif
if (expect_false (ev_is_active (w))) return;
EV_FREQUENT_CHECK;
ev_start (EV_A_ (W)w, 1); wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
EV_FREQUENT_CHECK; }
void ev_child_stop (EV_P_ ev_child *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return;
EV_FREQUENT_CHECK;
wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w); ev_stop (EV_A_ (W)w);
EV_FREQUENT_CHECK; }
#endif
#if EV_STAT_ENABLE
# ifdef _WIN32
# undef lstat
# define lstat(a,b) _stati64 (a,b)
# endif
#define DEF_STAT_INTERVAL 5.0074891
#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
#define MIN_STAT_INTERVAL 0.1074891
static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
#if EV_USE_INOTIFY
/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */ # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
static void noinline infy_add (EV_P_ ev_stat *w) { w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO | IN_DONT_FOLLOW | IN_MASK_ADD);
if (w->wd >= 0) { struct statfs sfs;
/* now local changes will be tracked by inotify, but remote changes won't */ /* unless the filesystem is known to be local, we therefore still poll */ /* also do poll on <2.6.25, but with normal frequency */
if (!fs_2625) w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; else if (!statfs (w->path, &sfs) && (sfs.f_type == 0x1373 /* devfs */ || sfs.f_type == 0x4006 /* fat */ || sfs.f_type == 0x4d44 /* msdos */ || sfs.f_type == 0xEF53 /* ext2/3 */ || sfs.f_type == 0x72b6 /* jffs2 */ || sfs.f_type == 0x858458f6 /* ramfs */ || sfs.f_type == 0x5346544e /* ntfs */ || sfs.f_type == 0x3153464a /* jfs */ || sfs.f_type == 0x9123683e /* btrfs */ || sfs.f_type == 0x52654973 /* reiser3 */ || sfs.f_type == 0x01021994 /* tmpfs */ || sfs.f_type == 0x58465342 /* xfs */)) w->timer.repeat = 0.; /* filesystem is local, kernel new enough */ else w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */ } else { /* can't use inotify, continue to stat */ w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
/* if path is not there, monitor some parent directory for speedup hints */ /* note that exceeding the hardcoded path limit is not a correctness issue, */ /* but an efficiency issue only */ if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) { char path [4096]; strcpy (path, w->path);
do { int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
char *pend = strrchr (path, '/');
if (!pend || pend == path) break;
*pend = 0; w->wd = inotify_add_watch (fs_fd, path, mask); } while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); } }
if (w->wd >= 0) wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
/* now re-arm timer, if required */ if (ev_is_active (&w->timer)) ev_ref (EV_A); ev_timer_again (EV_A_ &w->timer); if (ev_is_active (&w->timer)) ev_unref (EV_A); }
static void noinline infy_del (EV_P_ ev_stat *w) { int slot; int wd = w->wd;
if (wd < 0) return;
w->wd = -2; slot = wd & ((EV_INOTIFY_HASHSIZE) - 1); wlist_del (&fs_hash [slot].head, (WL)w);
/* remove this watcher, if others are watching it, they will rearm */ inotify_rm_watch (fs_fd, wd); }
static void noinline infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) { if (slot < 0) /* overflow, need to check for all hash slots */ for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot) infy_wd (EV_A_ slot, wd, ev); else { WL w_;
for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; ) { ev_stat *w = (ev_stat *)w_; w_ = w_->next; /* lets us remove this watcher and all before it */
if (w->wd == wd || wd == -1) { if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) { wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w); w->wd = -1; infy_add (EV_A_ w); /* re-add, no matter what */ }
stat_timer_cb (EV_A_ &w->timer, 0); } } } }
static void infy_cb (EV_P_ ev_io *w, int revents) { char buf [EV_INOTIFY_BUFSIZE]; int ofs; int len = read (fs_fd, buf, sizeof (buf));
for (ofs = 0; ofs < len; ) { struct inotify_event *ev = (struct inotify_event *)(buf + ofs); infy_wd (EV_A_ ev->wd, ev->wd, ev); ofs += sizeof (struct inotify_event) + ev->len; } }
inline_size void ecb_cold ev_check_2625 (EV_P) { /* kernels < 2.6.25 are borked
* http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
*/ if (ev_linux_version () < 0x020619) return;
fs_2625 = 1; }
inline_size int infy_newfd (void) { #if defined IN_CLOEXEC && defined IN_NONBLOCK
int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK); if (fd >= 0) return fd; #endif
return inotify_init (); }
inline_size void infy_init (EV_P) { if (fs_fd != -2) return;
fs_fd = -1;
ev_check_2625 (EV_A);
fs_fd = infy_newfd ();
if (fs_fd >= 0) { fd_intern (fs_fd); ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); ev_set_priority (&fs_w, EV_MAXPRI); ev_io_start (EV_A_ &fs_w); ev_unref (EV_A); } }
inline_size void infy_fork (EV_P) { int slot;
if (fs_fd < 0) return;
ev_ref (EV_A); ev_io_stop (EV_A_ &fs_w); close (fs_fd); fs_fd = infy_newfd ();
if (fs_fd >= 0) { fd_intern (fs_fd); ev_io_set (&fs_w, fs_fd, EV_READ); ev_io_start (EV_A_ &fs_w); ev_unref (EV_A); }
for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot) { WL w_ = fs_hash [slot].head; fs_hash [slot].head = 0;
while (w_) { ev_stat *w = (ev_stat *)w_; w_ = w_->next; /* lets us add this watcher */
w->wd = -1;
if (fs_fd >= 0) infy_add (EV_A_ w); /* re-add, no matter what */ else { w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; if (ev_is_active (&w->timer)) ev_ref (EV_A); ev_timer_again (EV_A_ &w->timer); if (ev_is_active (&w->timer)) ev_unref (EV_A); } } } }
#endif
#ifdef _WIN32
# define EV_LSTAT(p,b) _stati64 (p, b)
#else
# define EV_LSTAT(p,b) lstat (p, b)
#endif
void ev_stat_stat (EV_P_ ev_stat *w) EV_THROW { if (lstat (w->path, &w->attr) < 0) w->attr.st_nlink = 0; else if (!w->attr.st_nlink) w->attr.st_nlink = 1; }
static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents) { ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
ev_statdata prev = w->attr; ev_stat_stat (EV_A_ w);
/* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ if ( prev.st_dev != w->attr.st_dev || prev.st_ino != w->attr.st_ino || prev.st_mode != w->attr.st_mode || prev.st_nlink != w->attr.st_nlink || prev.st_uid != w->attr.st_uid || prev.st_gid != w->attr.st_gid || prev.st_rdev != w->attr.st_rdev || prev.st_size != w->attr.st_size || prev.st_atime != w->attr.st_atime || prev.st_mtime != w->attr.st_mtime || prev.st_ctime != w->attr.st_ctime ) { /* we only update w->prev on actual differences */ /* in case we test more often than invoke the callback, */ /* to ensure that prev is always different to attr */ w->prev = prev;
#if EV_USE_INOTIFY
if (fs_fd >= 0) { infy_del (EV_A_ w); infy_add (EV_A_ w); ev_stat_stat (EV_A_ w); /* avoid race... */ } #endif
ev_feed_event (EV_A_ w, EV_STAT); } }
void ev_stat_start (EV_P_ ev_stat *w) EV_THROW { if (expect_false (ev_is_active (w))) return;
ev_stat_stat (EV_A_ w);
if (w->interval < MIN_STAT_INTERVAL && w->interval) w->interval = MIN_STAT_INTERVAL;
ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL); ev_set_priority (&w->timer, ev_priority (w));
#if EV_USE_INOTIFY
infy_init (EV_A);
if (fs_fd >= 0) infy_add (EV_A_ w); else #endif
{ ev_timer_again (EV_A_ &w->timer); ev_unref (EV_A); }
ev_start (EV_A_ (W)w, 1);
EV_FREQUENT_CHECK; }
void ev_stat_stop (EV_P_ ev_stat *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return;
EV_FREQUENT_CHECK;
#if EV_USE_INOTIFY
infy_del (EV_A_ w); #endif
if (ev_is_active (&w->timer)) { ev_ref (EV_A); ev_timer_stop (EV_A_ &w->timer); }
ev_stop (EV_A_ (W)w);
EV_FREQUENT_CHECK; } #endif
#if EV_IDLE_ENABLE
void ev_idle_start (EV_P_ ev_idle *w) EV_THROW { if (expect_false (ev_is_active (w))) return;
pri_adjust (EV_A_ (W)w);
EV_FREQUENT_CHECK;
{ int active = ++idlecnt [ABSPRI (w)];
++idleall; ev_start (EV_A_ (W)w, active);
array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); idles [ABSPRI (w)][active - 1] = w; }
EV_FREQUENT_CHECK; }
void ev_idle_stop (EV_P_ ev_idle *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return;
EV_FREQUENT_CHECK;
{ int active = ev_active (w);
idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; ev_active (idles [ABSPRI (w)][active - 1]) = active;
ev_stop (EV_A_ (W)w); --idleall; }
EV_FREQUENT_CHECK; } #endif
#if EV_PREPARE_ENABLE
void ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW { if (expect_false (ev_is_active (w))) return;
EV_FREQUENT_CHECK;
ev_start (EV_A_ (W)w, ++preparecnt); array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); prepares [preparecnt - 1] = w;
EV_FREQUENT_CHECK; }
void ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return;
EV_FREQUENT_CHECK;
{ int active = ev_active (w);
prepares [active - 1] = prepares [--preparecnt]; ev_active (prepares [active - 1]) = active; }
ev_stop (EV_A_ (W)w);
EV_FREQUENT_CHECK; } #endif
#if EV_CHECK_ENABLE
void ev_check_start (EV_P_ ev_check *w) EV_THROW { if (expect_false (ev_is_active (w))) return;
EV_FREQUENT_CHECK;
ev_start (EV_A_ (W)w, ++checkcnt); array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); checks [checkcnt - 1] = w;
EV_FREQUENT_CHECK; }
void ev_check_stop (EV_P_ ev_check *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return;
EV_FREQUENT_CHECK;
{ int active = ev_active (w);
checks [active - 1] = checks [--checkcnt]; ev_active (checks [active - 1]) = active; }
ev_stop (EV_A_ (W)w);
EV_FREQUENT_CHECK; } #endif
#if EV_EMBED_ENABLE
void noinline ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW { ev_run (w->other, EVRUN_NOWAIT); }
static void embed_io_cb (EV_P_ ev_io *io, int revents) { ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
if (ev_cb (w)) ev_feed_event (EV_A_ (W)w, EV_EMBED); else ev_run (w->other, EVRUN_NOWAIT); }
static void embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) { ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
{ EV_P = w->other;
while (fdchangecnt) { fd_reify (EV_A); ev_run (EV_A_ EVRUN_NOWAIT); } } }
static void embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) { ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
ev_embed_stop (EV_A_ w);
{ EV_P = w->other;
ev_loop_fork (EV_A); ev_run (EV_A_ EVRUN_NOWAIT); }
ev_embed_start (EV_A_ w); }
#if 0
static void embed_idle_cb (EV_P_ ev_idle *idle, int revents) { ev_idle_stop (EV_A_ idle); } #endif
void ev_embed_start (EV_P_ ev_embed *w) EV_THROW { if (expect_false (ev_is_active (w))) return;
{ EV_P = w->other; assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); }
EV_FREQUENT_CHECK;
ev_set_priority (&w->io, ev_priority (w)); ev_io_start (EV_A_ &w->io);
ev_prepare_init (&w->prepare, embed_prepare_cb); ev_set_priority (&w->prepare, EV_MINPRI); ev_prepare_start (EV_A_ &w->prepare);
ev_fork_init (&w->fork, embed_fork_cb); ev_fork_start (EV_A_ &w->fork);
/*ev_idle_init (&w->idle, e,bed_idle_cb);*/
ev_start (EV_A_ (W)w, 1);
EV_FREQUENT_CHECK; }
void ev_embed_stop (EV_P_ ev_embed *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return;
EV_FREQUENT_CHECK;
ev_io_stop (EV_A_ &w->io); ev_prepare_stop (EV_A_ &w->prepare); ev_fork_stop (EV_A_ &w->fork);
ev_stop (EV_A_ (W)w);
EV_FREQUENT_CHECK; } #endif
#if EV_FORK_ENABLE
void ev_fork_start (EV_P_ ev_fork *w) EV_THROW { if (expect_false (ev_is_active (w))) return;
EV_FREQUENT_CHECK;
ev_start (EV_A_ (W)w, ++forkcnt); array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); forks [forkcnt - 1] = w;
EV_FREQUENT_CHECK; }
void ev_fork_stop (EV_P_ ev_fork *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return;
EV_FREQUENT_CHECK;
{ int active = ev_active (w);
forks [active - 1] = forks [--forkcnt]; ev_active (forks [active - 1]) = active; }
ev_stop (EV_A_ (W)w);
EV_FREQUENT_CHECK; } #endif
#if EV_CLEANUP_ENABLE
void ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW { if (expect_false (ev_is_active (w))) return;
EV_FREQUENT_CHECK;
ev_start (EV_A_ (W)w, ++cleanupcnt); array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2); cleanups [cleanupcnt - 1] = w;
/* cleanup watchers should never keep a refcount on the loop */ ev_unref (EV_A); EV_FREQUENT_CHECK; }
void ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return;
EV_FREQUENT_CHECK; ev_ref (EV_A);
{ int active = ev_active (w);
cleanups [active - 1] = cleanups [--cleanupcnt]; ev_active (cleanups [active - 1]) = active; }
ev_stop (EV_A_ (W)w);
EV_FREQUENT_CHECK; } #endif
#if EV_ASYNC_ENABLE
void ev_async_start (EV_P_ ev_async *w) EV_THROW { if (expect_false (ev_is_active (w))) return;
w->sent = 0;
evpipe_init (EV_A);
EV_FREQUENT_CHECK;
ev_start (EV_A_ (W)w, ++asynccnt); array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); asyncs [asynccnt - 1] = w;
EV_FREQUENT_CHECK; }
void ev_async_stop (EV_P_ ev_async *w) EV_THROW { clear_pending (EV_A_ (W)w); if (expect_false (!ev_is_active (w))) return;
EV_FREQUENT_CHECK;
{ int active = ev_active (w);
asyncs [active - 1] = asyncs [--asynccnt]; ev_active (asyncs [active - 1]) = active; }
ev_stop (EV_A_ (W)w);
EV_FREQUENT_CHECK; }
void ev_async_send (EV_P_ ev_async *w) EV_THROW { w->sent = 1; evpipe_write (EV_A_ &async_pending); } #endif
/*****************************************************************************/
struct ev_once { ev_io io; ev_timer to; void (*cb)(int revents, void *arg); void *arg; };
static void once_cb (EV_P_ struct ev_once *once, int revents) { void (*cb)(int revents, void *arg) = once->cb; void *arg = once->arg;
ev_io_stop (EV_A_ &once->io); ev_timer_stop (EV_A_ &once->to); ev_free (once);
cb (revents, arg); }
static void once_cb_io (EV_P_ ev_io *w, int revents) { struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to)); }
static void once_cb_to (EV_P_ ev_timer *w, int revents) { struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); }
void ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW { struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
if (expect_false (!once)) { cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg); return; }
once->cb = cb; once->arg = arg;
ev_init (&once->io, once_cb_io); if (fd >= 0) { ev_io_set (&once->io, fd, events); ev_io_start (EV_A_ &once->io); }
ev_init (&once->to, once_cb_to); if (timeout >= 0.) { ev_timer_set (&once->to, timeout, 0.); ev_timer_start (EV_A_ &once->to); } }
/*****************************************************************************/
#if EV_WALK_ENABLE
void ecb_cold ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW { int i, j; ev_watcher_list *wl, *wn;
if (types & (EV_IO | EV_EMBED)) for (i = 0; i < anfdmax; ++i) for (wl = anfds [i].head; wl; ) { wn = wl->next;
#if EV_EMBED_ENABLE
if (ev_cb ((ev_io *)wl) == embed_io_cb) { if (types & EV_EMBED) cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io)); } else #endif
#if EV_USE_INOTIFY
if (ev_cb ((ev_io *)wl) == infy_cb) ; else #endif
if ((ev_io *)wl != &pipe_w) if (types & EV_IO) cb (EV_A_ EV_IO, wl);
wl = wn; }
if (types & (EV_TIMER | EV_STAT)) for (i = timercnt + HEAP0; i-- > HEAP0; ) #if EV_STAT_ENABLE
/*TODO: timer is not always active*/ if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb) { if (types & EV_STAT) cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer)); } else #endif
if (types & EV_TIMER) cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
#if EV_PERIODIC_ENABLE
if (types & EV_PERIODIC) for (i = periodiccnt + HEAP0; i-- > HEAP0; ) cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); #endif
#if EV_IDLE_ENABLE
if (types & EV_IDLE) for (j = NUMPRI; j--; ) for (i = idlecnt [j]; i--; ) cb (EV_A_ EV_IDLE, idles [j][i]); #endif
#if EV_FORK_ENABLE
if (types & EV_FORK) for (i = forkcnt; i--; ) if (ev_cb (forks [i]) != embed_fork_cb) cb (EV_A_ EV_FORK, forks [i]); #endif
#if EV_ASYNC_ENABLE
if (types & EV_ASYNC) for (i = asynccnt; i--; ) cb (EV_A_ EV_ASYNC, asyncs [i]); #endif
#if EV_PREPARE_ENABLE
if (types & EV_PREPARE) for (i = preparecnt; i--; ) # if EV_EMBED_ENABLE
if (ev_cb (prepares [i]) != embed_prepare_cb) # endif
cb (EV_A_ EV_PREPARE, prepares [i]); #endif
#if EV_CHECK_ENABLE
if (types & EV_CHECK) for (i = checkcnt; i--; ) cb (EV_A_ EV_CHECK, checks [i]); #endif
#if EV_SIGNAL_ENABLE
if (types & EV_SIGNAL) for (i = 0; i < EV_NSIG - 1; ++i) for (wl = signals [i].head; wl; ) { wn = wl->next; cb (EV_A_ EV_SIGNAL, wl); wl = wn; } #endif
#if EV_CHILD_ENABLE
if (types & EV_CHILD) for (i = (EV_PID_HASHSIZE); i--; ) for (wl = childs [i]; wl; ) { wn = wl->next; cb (EV_A_ EV_CHILD, wl); wl = wn; } #endif
/* EV_STAT 0x00001000 /* stat data changed */ /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ } #endif
#if EV_MULTIPLICITY
#include "ev_wrap.h"
#endif
|