|
|
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <locale.h>
#include <netdb.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <time.h>
#include <unistd.h>
#include <assert.h>
#include "utils.h"
#include "server.h"
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifndef EAGAIN
#define EAGAIN EWOULDBLOCK
#endif
#ifndef EWOULDBLOCK
#define EWOULDBLOCK EAGAIN
#endif
#define min(a,b) (((a)<(b))?(a):(b))
static int verbose = 0; static int remote_conn = 0; static int server_conn = 0;
int setnonblocking(int fd) { int flags; if (-1 ==(flags = fcntl(fd, F_GETFL, 0))) flags = 0; return fcntl(fd, F_SETFL, flags | O_NONBLOCK); }
int create_and_bind(const char *host, const char *port) { struct addrinfo hints; struct addrinfo *result, *rp; int s, listen_sock;
memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_UNSPEC; /* Return IPv4 and IPv6 choices */ hints.ai_socktype = SOCK_STREAM; /* We want a TCP socket */
s = getaddrinfo(host, port, &hints, &result); if (s != 0) { LOGE("getaddrinfo: %s", gai_strerror(s)); return -1; }
for (rp = result; rp != NULL; rp = rp->ai_next) { listen_sock = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol); if (listen_sock == -1) continue;
int opt = 1; int err = setsockopt(listen_sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)); if (err) { perror("setsocket"); }
s = bind(listen_sock, rp->ai_addr, rp->ai_addrlen); if (s == 0) { /* We managed to bind successfully! */ break; } else { perror("bind"); }
close(listen_sock); }
if (rp == NULL) { LOGE("Could not bind"); return -1; }
freeaddrinfo(result);
return listen_sock; }
struct remote *connect_to_remote(char *remote_host, char *remote_port, int timeout) { struct addrinfo hints, *res; int sockfd; memset(&hints, 0, sizeof hints); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM;
int err = getaddrinfo(remote_host, remote_port, &hints, &res); if (err) { perror("getaddrinfo"); return NULL; }
// initilize remote socks
sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol); if (sockfd < 0) { perror("socket"); close(sockfd); freeaddrinfo(res); return NULL; }
struct remote *remote = new_remote(sockfd, timeout);
// setup remote socks
setnonblocking(sockfd); connect(sockfd, res->ai_addr, res->ai_addrlen);
// release addrinfo
freeaddrinfo(res);
return remote; }
static void server_recv_cb (EV_P_ ev_io *w, int revents) { struct server_ctx *server_recv_ctx = (struct server_ctx *)w; struct server *server = server_recv_ctx->server; struct remote *remote = NULL;
char *buf = server->buf;
if (server->stage != 0) { remote = server->remote; buf = remote->buf; }
ssize_t r = recv(server->fd, buf, BUF_SIZE, 0);
if (r == 0) { // connection closed
close_and_free_server(EV_A_ server); if (remote != NULL) { ev_io_start(EV_A_ &remote->send_ctx->io); } return; } else if (r < 0) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data
// continue to wait for recv
return; } else { perror("server recv"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } }
decrypt_ctx(buf, r, server->d_ctx);
// handshake and transmit data
if (server->stage == 5) { int s = send(remote->fd, remote->buf, r, 0); if (s == -1) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data, wait for send
remote->buf_len = r; ev_io_stop(EV_A_ &server_recv_ctx->io); ev_io_start(EV_A_ &remote->send_ctx->io); } else { perror("server_recv_send"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } } else if (s < r) { char *pt = remote->buf; char *et = pt + r; while (pt + s < et) { *pt = *(pt + s); pt++; } remote->buf_len = r - s; assert(remote->buf_len >= 0); ev_io_stop(EV_A_ &server_recv_ctx->io); ev_io_start(EV_A_ &remote->send_ctx->io); } return; } else if (server->stage == 0) {
/*
* Shadowsocks Protocol: * * +------+----------+----------+ * | ATYP | DST.ADDR | DST.PORT | * +------+----------+----------+ * | 1 | Variable | 2 | * +------+----------+----------+ */
int offset = 0; char atyp = server->buf[offset++]; char host[256]; char port[64]; memset(host, 0, 256); int p = 0;
// get remote addr and port
if (atyp == 1) { // IP V4
size_t in_addr_len = sizeof(struct in_addr); char *a = inet_ntoa(*(struct in_addr*)(server->buf + offset)); memcpy(host, a, strlen(a)); offset += in_addr_len;
} else if (atyp == 3) { // Domain name
uint8_t name_len = *(uint8_t *)(server->buf + offset); memcpy(host, server->buf + offset + 1, name_len); offset += name_len + 1;
} else { LOGE("unsupported addrtype: %d", atyp); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; }
p += *(uint8_t *)(server->buf + offset++) << 8; p += *(uint8_t *)(server->buf + offset++);
sprintf(port, "%d", p);
if (verbose) { LOGD("connect to: %s:%s", host, port); }
struct remote *remote = connect_to_remote(host, port, server->timeout); if (remote == NULL) { close_and_free_server(EV_A_ server); return; }
server->remote = remote; remote->server = server;
// listen to remote connected event
ev_io_stop(EV_A_ &server_recv_ctx->io); ev_io_start(EV_A_ &remote->send_ctx->io); ev_timer_start(EV_A_ &remote->send_ctx->watcher);
// XXX: should handel buffer carefully
if (r > offset) { remote->buf_len = r - offset; memcpy(remote->buf, server->buf + offset, remote->buf_len); }
server->stage = 4;
return; } // should not reach here
FATAL("server context error."); }
static void server_send_cb (EV_P_ ev_io *w, int revents) { struct server_ctx *server_send_ctx = (struct server_ctx *)w; struct server *server = server_send_ctx->server; struct remote *remote = server->remote;
if (remote == NULL) { LOGE("invalid server."); close_and_free_server(EV_A_ server); return; }
if (server->buf_len == 0) { // close and free
close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else { // has data to send
ssize_t s = send(server->fd, server->buf, server->buf_len, 0); if (s < 0) { if (errno != EAGAIN && errno != EWOULDBLOCK) { perror("server_send_send"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } return; } else if (s < server->buf_len) { // partly sent, move memory, wait for the next time to send
char *pt = server->buf; char *et = pt + server->buf_len; while (pt + s < et) { *pt = *(pt + s); pt++; } server->buf_len -= s; assert(server->buf_len >= 0); return; } else { // all sent out, wait for reading
server->buf_len = 0; ev_io_stop(EV_A_ &server_send_ctx->io); if (remote != NULL) { ev_io_start(EV_A_ &remote->recv_ctx->io); return; } else { LOGE("invalid remote."); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } } } }
static void remote_timeout_cb(EV_P_ ev_timer *watcher, int revents) { struct remote_ctx *remote_ctx = (struct remote_ctx *) (((void*)watcher) - sizeof(ev_io)); struct remote *remote = remote_ctx->remote; struct server *server = remote->server;
LOGE("remote timeout");
ev_timer_stop(EV_A_ watcher);
close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); }
static void remote_recv_cb (EV_P_ ev_io *w, int revents) { struct remote_ctx *remote_recv_ctx = (struct remote_ctx *)w; struct remote *remote = remote_recv_ctx->remote; struct server *server = remote->server;
if (server == NULL) { LOGE("invalid server."); close_and_free_remote(EV_A_ remote); return; }
ssize_t r = recv(remote->fd, server->buf, BUF_SIZE, 0);
if (verbose) { LOGD("remote recv: %d byte", (int)r); }
if (r == 0) { // connection closed
close_and_free_remote(EV_A_ remote); if (server != NULL) { ev_io_start(EV_A_ &server->send_ctx->io); } return; } else if (r < 0) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data
// continue to wait for recv
return; } else { perror("remote recv"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } }
encrypt_ctx(server->buf, r, server->e_ctx); int s = send(server->fd, server->buf, r, 0);
if (s == -1) { if (errno == EAGAIN || errno == EWOULDBLOCK) { // no data, wait for send
server->buf_len = r; ev_io_stop(EV_A_ &remote_recv_ctx->io); ev_io_start(EV_A_ &server->send_ctx->io); } else { perror("remote_recv_send"); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } return; } else if (s < r) { char *pt = server->buf; char *et = pt + r; while (pt + s < et) { *pt = *(pt + s); pt++; } server->buf_len = r - s; assert(server->buf_len >= 0); ev_io_stop(EV_A_ &remote_recv_ctx->io); ev_io_start(EV_A_ &server->send_ctx->io); return; } }
static void remote_send_cb (EV_P_ ev_io *w, int revents) { struct remote_ctx *remote_send_ctx = (struct remote_ctx *)w; struct remote *remote = remote_send_ctx->remote; struct server *server = remote->server;
if (server == NULL) { LOGE("invalid server."); close_and_free_remote(EV_A_ remote); return; }
if (!remote_send_ctx->connected) {
struct sockaddr_storage addr; socklen_t len = sizeof addr; int r = getpeername(remote->fd, (struct sockaddr*)&addr, &len); if (r == 0) { if (verbose) { LOGD("remote connected."); } remote_send_ctx->connected = 1; ev_timer_stop(EV_A_ &remote_send_ctx->watcher);
ev_io_start(EV_A_ &remote->recv_ctx->io); server->stage = 5;
if (remote->buf_len == 0) { ev_io_stop(EV_A_ &remote_send_ctx->io); ev_io_start(EV_A_ &server->recv_ctx->io); return; }
} else { perror("getpeername"); // not connected
close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } }
if (remote->buf_len == 0) { // close and free
close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); return; } else { // has data to send
ssize_t s = send(remote->fd, remote->buf, remote->buf_len, 0); if (s < 0) { if (errno != EAGAIN && errno != EWOULDBLOCK) { perror("remote_send_send"); // close and free
close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } return; } else if (s < remote->buf_len) { // partly sent, move memory, wait for the next time to send
char *pt = remote->buf; char *et = pt + remote->buf_len; while (pt + s < et) { *pt = *(pt + s); pt++; } remote->buf_len -= s; assert(remote->buf_len >= 0); return; } else { // all sent out, wait for reading
remote->buf_len = 0; ev_io_stop(EV_A_ &remote_send_ctx->io); if (server != NULL) { ev_io_start(EV_A_ &server->recv_ctx->io); } else { LOGE("invalid server."); close_and_free_remote(EV_A_ remote); close_and_free_server(EV_A_ server); } return; } } }
struct remote* new_remote(int fd, int timeout) { remote_conn++; struct remote *remote; remote = malloc(sizeof(struct remote)); remote->recv_ctx = malloc(sizeof(struct remote_ctx)); remote->send_ctx = malloc(sizeof(struct remote_ctx)); remote->fd = fd; ev_io_init(&remote->recv_ctx->io, remote_recv_cb, fd, EV_READ); ev_io_init(&remote->send_ctx->io, remote_send_cb, fd, EV_WRITE); ev_timer_init(&remote->send_ctx->watcher, remote_timeout_cb, timeout, 0); remote->recv_ctx->remote = remote; remote->recv_ctx->connected = 0; remote->send_ctx->remote = remote; remote->send_ctx->connected = 0; remote->buf_len = 0; remote->server = NULL; return remote; }
void free_remote(struct remote *remote) { remote_conn--; if (remote != NULL) { if (remote->server != NULL) { remote->server->remote = NULL; } free(remote->recv_ctx); free(remote->send_ctx); free(remote); } }
void close_and_free_remote(EV_P_ struct remote *remote) { if (remote != NULL) { ev_timer_stop(EV_A_ &remote->send_ctx->watcher); ev_io_stop(EV_A_ &remote->send_ctx->io); ev_io_stop(EV_A_ &remote->recv_ctx->io); close(remote->fd); free_remote(remote); } if (verbose) { LOGD("current remote connection: %d", remote_conn); } }
struct server* new_server(int fd) { server_conn++; struct server *server; server = malloc(sizeof(struct server)); server->recv_ctx = malloc(sizeof(struct server_ctx)); server->send_ctx = malloc(sizeof(struct server_ctx)); server->fd = fd; ev_io_init(&server->recv_ctx->io, server_recv_cb, fd, EV_READ); ev_io_init(&server->send_ctx->io, server_send_cb, fd, EV_WRITE); server->recv_ctx->server = server; server->recv_ctx->connected = 0; server->send_ctx->server = server; server->send_ctx->connected = 0; server->stage = 0; if (enc_conf.method == RC4) { server->e_ctx = malloc(sizeof(struct rc4_state)); server->d_ctx = malloc(sizeof(struct rc4_state)); enc_ctx_init(server->e_ctx, 1); enc_ctx_init(server->d_ctx, 0); } else { server->e_ctx = NULL; server->d_ctx = NULL; } server->buf_len = 0; server->remote = NULL; return server; }
void free_server(struct server *server) { server_conn--; if (server != NULL) { if (server->remote != NULL) { server->remote->server = NULL; } if (enc_conf.method == RC4) { free(server->e_ctx); free(server->d_ctx); } free(server->recv_ctx); free(server->send_ctx); free(server); } }
void close_and_free_server(EV_P_ struct server *server) { if (server != NULL) { ev_io_stop(EV_A_ &server->send_ctx->io); ev_io_stop(EV_A_ &server->recv_ctx->io); close(server->fd); free_server(server); } if (verbose) { LOGD("current server connection: %d", server_conn); } }
static void accept_cb (EV_P_ ev_io *w, int revents) { struct listen_ctx *listener = (struct listen_ctx *)w; int serverfd = accept(listener->fd, NULL, NULL); if (serverfd == -1) { perror("accept"); return; } setnonblocking(serverfd);
if (verbose) { LOGD("accept a connection."); }
struct server *server = new_server(serverfd); server->timeout = listener->timeout; ev_io_start(EV_A_ &server->recv_ctx->io); }
int main (int argc, char **argv) {
int i, c; int pid_flags = 0; char *password = NULL; char *timeout = NULL; char *method = NULL; char *pid_path = NULL; char *conf_path = NULL;
int server_num = 0; char *server_host[MAX_REMOTE_NUM]; char *server_port = NULL;
opterr = 0;
while ((c = getopt (argc, argv, "f:s:p:l:k:t:m:c:v")) != -1) { switch (c) { case 's': server_host[server_num++] = optarg; break; case 'p': server_port = optarg; break; case 'k': password = optarg; break; case 'f': pid_flags = 1; pid_path = optarg; break; case 't': timeout = optarg; break; case 'm': method = optarg; break; case 'c': conf_path = optarg; break; case 'v': verbose = 1; } }
if (opterr) { usage(); exit(EXIT_FAILURE); }
if (conf_path != NULL) { jconf_t *conf = read_jconf(conf_path); if (server_num == 0) { server_num = conf->remote_num; for (i = 0; i < server_num; i++) { server_host[i] = conf->remote_host[i]; } } if (server_port == NULL) server_port = conf->remote_port; if (password == NULL) password = conf->password; if (method == NULL) method = conf->method; if (timeout == NULL) timeout = conf->timeout; }
if (server_num == 0 || server_port == NULL || password == NULL) { usage(); exit(EXIT_FAILURE); }
if (timeout == NULL) timeout = "60";
if (pid_flags) { demonize(pid_path); }
// ignore SIGPIPE
signal(SIGPIPE, SIG_IGN);
// Setup keys
LOGD("calculating ciphers..."); enc_conf_init(password, method);
// Inilitialize ev loop
struct ev_loop *loop = EV_DEFAULT;
// bind to each interface
while (server_num > 0) { int index = --server_num; const char* host = server_host[index];
// Bind to port
int listenfd; listenfd = create_and_bind(host, server_port); if (listenfd < 0) { FATAL("bind() error.."); } if (listen(listenfd, SOMAXCONN) == -1) { FATAL("listen() error."); } setnonblocking(listenfd); LOGD("server listening at port %s.", server_port);
// Setup proxy context
struct listen_ctx listen_ctx; listen_ctx.timeout = timeout; listen_ctx.fd = listenfd;
ev_io_init (&listen_ctx.io, accept_cb, listenfd, EV_READ); ev_io_start (loop, &listen_ctx.io); }
// start ev loop
ev_run (loop, 0); return 0; }
|