You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

112 lines
4.2 KiB

#!/usr/bin/env python3
#
# Usage: ./update_plots.py
# Updates plots from the Plotly section so they show the latest data.
from pathlib import Path
from datetime import date, time, datetime, timedelta
import pandas as pd
from plotly.express import line
import plotly.graph_objects as go
import re
def main():
# print('Updating covid deaths...')
# update_covid_deaths()
print('Updating covid cases...')
update_confirmed_cases()
def update_covid_deaths():
def update_readme(date_treshold):
lines = read_file('../README.md')
out = [re.sub("df.date < '\d{4}-\d{2}-\d{2}'", f"df.date < '{date_treshold}'", line)
for line in lines]
write_to_file('../README.md', out)
covid = pd.read_csv('https://covid.ourworldindata.org/data/owid-covid-data.csv',
usecols=['iso_code', 'date', 'total_deaths', 'population'])
continents = pd.read_csv('https://datahub.io/JohnSnowLabs/country-and-continent-codes-' + \
'list/r/country-and-continent-codes-list-csv.csv',
usecols=['Three_Letter_Country_Code', 'Continent_Name'])
df = pd.merge(covid, continents, left_on='iso_code', right_on='Three_Letter_Country_Code')
df = df.groupby(['Continent_Name', 'date']).sum().reset_index()
df['Total Deaths per Million'] = df.total_deaths * 1e6 / df.population
date_treshold = str(date.today() - timedelta(days=2))
df = df[('2020-03-14' < df.date) & (df.date < date_treshold)]
df = df.rename({'date': 'Date', 'Continent_Name': 'Continent'}, axis='columns')
f = line(df, x='Date', y='Total Deaths per Million', color='Continent')
f.update_layout(margin=dict(t=24, b=0), paper_bgcolor='rgba(0, 0, 0, 0)')
update_file('covid_deaths.js', f)
update_readme(date_treshold)
def update_confirmed_cases():
def main():
df = wrangle_data(*scrape_data())
f = get_figure(df)
update_file('covid_cases.js', f)
def scrape_data():
def scrape_yahoo(id_):
BASE_URL = 'https://query1.finance.yahoo.com/v7/finance/download/'
now = int(datetime.now().timestamp())
url = f'{BASE_URL}{id_}?period1=1579651200&period2={now}&interval=1d&events=history'
return pd.read_csv(url, usecols=['Date', 'Close']).set_index('Date').Close
covid = pd.read_csv('https://covid.ourworldindata.org/data/owid-covid-data.csv',
usecols=['date', 'total_cases'])
covid = covid.groupby('date').sum()
dow, gold, bitcoin = [scrape_yahoo(id_) for id_ in ('^DJI', 'GC=F', 'BTC-USD')]
dow.name, gold.name, bitcoin.name = 'Dow Jones', 'Gold', 'Bitcoin'
return covid, dow, gold, bitcoin
def wrangle_data(covid, dow, gold, bitcoin):
df = pd.concat([dow, gold, bitcoin], axis=1)
df = df.sort_index().interpolate()
df = df.rolling(10, min_periods=1, center=True).mean()
df = df.loc['2020-02-23':].iloc[:-2]
df = (df / df.iloc[0]) * 100
return pd.concat([covid, df], axis=1, join='inner')
def get_figure(df):
def get_trace(col_name):
return go.Scatter(x=df.index, y=df[col_name], name=col_name, yaxis='y2')
traces = [get_trace(col_name) for col_name in df.columns[1:]]
traces.append(go.Scatter(x=df.index, y=df.total_cases, name='Total Cases', yaxis='y1'))
figure = go.Figure()
figure.add_traces(traces)
figure.update_layout(
yaxis1=dict(title='Total Cases', rangemode='tozero'),
yaxis2=dict(title='%', rangemode='tozero', overlaying='y', side='right'),
legend=dict(x=1.1),
margin=dict(t=24, b=0),
paper_bgcolor='rgba(0, 0, 0, 0)'
)
return figure
main()
def update_file(filename, figure):
lines = read_file(filename)
f_json = figure.to_json(pretty=True).replace('\n', '\n ')
out = lines[:6] + [f' {f_json}\n', ' )\n', '};\n']
write_to_file(filename, out)
###
## UTIL
#
def read_file(filename):
with open(filename, encoding='utf-8') as file:
return file.readlines()
def write_to_file(filename, lines):
with open(filename, 'w', encoding='utf-8') as file:
file.writelines(lines)
if __name__ == '__main__':
main()