Comprehensive Python Cheatsheet


#Contents

ToC = {
    '1. Collections': [List, Dictionary, Set, Tuple, Range, Enumerate, Iterator, Generator],
    '2. Types':       [Type, String, Regular_Exp, Format, Numbers, Combinatorics, Datetime],
    '3. Syntax':      [Args, Inline, Import, Decorator, Class, Duck_Types, Enum, Exception],
    '4. System':      [Exit, Print, Input, Command_Line_Arguments, Open, Path, OS_Commands],
    '5. Data':        [JSON, Pickle, CSV, SQLite, Bytes, Struct, Array, Memory_View, Deque],
    '6. Advanced':    [Threading, Operator, Introspection, Metaprograming, Eval, Coroutine],
    '7. Libraries':   [Progress_Bar, Plot, Table, Curses, Logging, Scraping, Web, Profile,
                       NumPy, Image, Audio, Games, Data]
}

#Main

if __name__ == '__main__':     # Runs main() if file wasn't imported.
    main()

#List

<list> = <list>[<slice>]       # Or: <list>[from_inclusive : to_exclusive : ±step]
<list>.append(<el>)            # Or: <list> += [<el>]
<list>.extend(<collection>)    # Or: <list> += <collection>
<list>.sort()                  # Sorts in ascending order.
<list>.reverse()               # Reverses the list in-place.
<list> = sorted(<collection>)  # Returns a new sorted list.
<iter> = reversed(<list>)      # Returns reversed iterator.
sum_of_elements  = sum(<collection>)
elementwise_sum  = [sum(pair) for pair in zip(list_a, list_b)]
sorted_by_second = sorted(<collection>, key=lambda el: el[1])
sorted_by_both   = sorted(<collection>, key=lambda el: (el[1], el[0]))
flatter_list     = list(itertools.chain.from_iterable(<list>))
product_of_elems = functools.reduce(lambda out, el: out * el, <collection>)
list_of_chars    = list(<str>)
<list>.insert(<int>, <el>)     # Inserts item at index and moves the rest to the right.
<el>  = <list>.pop([<int>])    # Removes and returns item at index or from the end.
<int> = <list>.count(<el>)     # Returns number of occurrences. Also works on strings.
<int> = <list>.index(<el>)     # Returns index of the first occurrence or raises ValueError.
<list>.remove(<el>)            # Removes first occurrence of the item or raises ValueError.
<list>.clear()                 # Removes all items. Also works on dictionary and set.

#Dictionary

<view> = <dict>.keys()                          # Coll. of keys that reflects changes.
<view> = <dict>.values()                        # Coll. of values that reflects changes.
<view> = <dict>.items()                         # Coll. of key-value tuples that reflects chgs.
value  = <dict>.get(key, default=None)          # Returns default if key is missing.
value  = <dict>.setdefault(key, default=None)   # Returns and writes default if key is missing.
<dict> = collections.defaultdict(<type>)        # Returns a dict with default value of type.
<dict> = collections.defaultdict(lambda: 1)     # Returns a dict with default value 1.
<dict> = dict(<collection>)                     # Creates a dict from coll. of key-value pairs.
<dict> = dict(zip(keys, values))                # Creates a dict from two collections.
<dict> = dict.fromkeys(keys [, value])          # Creates a dict from collection of keys.
<dict>.update(<dict>)                           # Adds items. Replaces ones with matching keys.
value = <dict>.pop(key)                         # Removes item or raises KeyError.
{k for k, v in <dict>.items() if v == value}    # Returns set of keys that point to the value.
{k: v for k, v in <dict>.items() if k in keys}  # Returns a dictionary, filtered by keys.

Counter

>>> from collections import Counter
>>> colors = ['blue', 'blue', 'blue', 'red', 'red']
>>> counter = Counter(colors)
>>> counter['yellow'] += 1
Counter({'blue': 3, 'red': 2, 'yellow': 1})
>>> counter.most_common()[0]
('blue', 3)

#Set

<set> = set()                                   # `{}` returns a dictionary.
<set>.add(<el>)                                 # Or: <set> |= {<el>}
<set>.update(<collection> [, ...])              # Or: <set> |= <set>
<set>  = <set>.union(<coll.>)                   # Or: <set> | <set>
<set>  = <set>.intersection(<coll.>)            # Or: <set> & <set>
<set>  = <set>.difference(<coll.>)              # Or: <set> - <set>
<set>  = <set>.symmetric_difference(<coll.>)    # Or: <set> ^ <set>
<bool> = <set>.issubset(<coll.>)                # Or: <set> <= <set>
<bool> = <set>.issuperset(<coll.>)              # Or: <set> >= <set>
<el> = <set>.pop()                              # Raises KeyError if empty.
<set>.remove(<el>)                              # Raises KeyError if missing.
<set>.discard(<el>)                             # Doesn't raise an error.

Frozen Set

<frozenset> = frozenset(<collection>)

#Tuple

Tuple is an immutable and hashable list.

<tuple> = ()                                # Empty tuple.
<tuple> = (<el>,)                           # Or: <el>,
<tuple> = (<el_1>, <el_2> [, ...])          # Or: <el_1>, <el_2> [, ...]

Named Tuple

Tuple's subclass with named elements.

>>> from collections import namedtuple
>>> Point = namedtuple('Point', 'x y')
>>> p = Point(1, y=2)
Point(x=1, y=2)
>>> p[0]
1
>>> p.x
1
>>> getattr(p, 'y')
2

#Range

Immutable and hashable sequence of integers.

<range> = range(stop)                       # range(to_exclusive)
<range> = range(start, stop)                # range(from_inclusive, to_exclusive)
<range> = range(start, stop, ±step)         # range(from_inclusive, to_exclusive, ±step_size)
>>> [i for i in range(3)]
[0, 1, 2]

#Enumerate

for i, el in enumerate(<collection> [, i_start]):
    ...

#Iterator

<iter> = iter(<collection>)                 # `iter(<iter>)` returns unmodified iterator.
<iter> = iter(<function>, to_exclusive)     # A sequence of return values until 'to_exclusive'.
<el>   = next(<iter> [, default])           # Raises StopIteration or returns 'default' on end.
<list> = list(<iter>)                       # Returns a list of iterator's remaining elements.

Itertools

import itertools as it
<iter> = it.count(start=0, step=1)          # Returns updated value endlessly. Accepts floats.
<iter> = it.repeat(<el> [, times])          # Returns element endlessly or 'times' times.
<iter> = it.cycle(<collection>)             # Repeats the sequence endlessly.
<iter> = it.chain(<coll>, <coll> [, ...])   # Empties collections in order (figuratively).
<iter> = it.chain.from_iterable(<coll>)     # Empties collections inside a collection in order.
<iter> = it.islice(<coll>, to_exclusive)    # Only returns first 'to_exclusive' elements.
<iter> = it.islice(<coll>, from_inc, …)     # `to_exclusive, +step_size`. Indices can be None.

#Generator

def count(start, step):
    while True:
        yield start
        start += step
>>> counter = count(10, 2)
>>> next(counter), next(counter), next(counter)
(10, 12, 14)

#Type

<type> = type(<el>)                          # Or: <el>.__class__
<bool> = isinstance(<el>, <type>)            # Or: issubclass(type(<el>), <type>)
>>> type('a'), 'a'.__class__, str
(<class 'str'>, <class 'str'>, <class 'str'>)

Some types do not have built-in names, so they must be imported:

from types import FunctionType, MethodType, LambdaType, GeneratorType, ModuleType

Abstract Base Classes

Each abstract base class specifies a set of virtual subclasses. These classes are then recognized by isinstance() and issubclass() as subclasses of the ABC, although they are really not. ABC can also manually decide whether or not a specific class is its virtual subclass, usually based on which methods the class has implemented. For instance, Iterable ABC looks for method iter(), while Collection ABC looks for iter(), contains() and len().

>>> from collections.abc import Iterable, Collection, Sequence
>>> isinstance([1, 2, 3], Iterable)
True
┏━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━┓
┃                  │  Iterable  │ Collection │  Sequence  ┃
┠──────────────────┼────────────┼────────────┼────────────┨
┃ list, range, str │     ✓      │     ✓      │     ✓      ┃
┃ dict, set        │     ✓      │     ✓      │            ┃
┃ iter             │     ✓      │            │            ┃
┗━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┛
>>> from numbers import Number, Complex, Real, Rational, Integral
>>> isinstance(123, Number)
True
┏━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━┓
┃                    │  Number  │  Complex │   Real   │ Rational │ Integral ┃
┠────────────────────┼──────────┼──────────┼──────────┼──────────┼──────────┨
┃ int                │    ✓     │    ✓     │    ✓     │    ✓     │    ✓     ┃
┃ fractions.Fraction │    ✓     │    ✓     │    ✓     │    ✓     │          ┃
┃ float              │    ✓     │    ✓     │    ✓     │          │          ┃
┃ complex            │    ✓     │    ✓     │          │          │          ┃
┃ decimal.Decimal    │    ✓     │          │          │          │          ┃
┗━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━┛

#String

<str>  = <str>.strip()                       # Strips all whitespace characters from both ends.
<str>  = <str>.strip('<chars>')              # Strips all passed characters from both ends.
<list> = <str>.split()                       # Splits on one or more whitespace characters.
<list> = <str>.split(sep=None, maxsplit=-1)  # Splits on 'sep' str at most 'maxsplit' times.
<list> = <str>.splitlines(keepends=False)    # On [\n\r\f\v\x1c-\x1e\x85\u2028\u2029] and \r\n.
<str>  = <str>.join(<coll_of_strings>)       # Joins elements using string as a separator.
<bool> = <sub_str> in <str>                  # Checks if string contains the substring.
<bool> = <str>.startswith(<sub_str>)         # Pass tuple of strings for multiple options.
<bool> = <str>.endswith(<sub_str>)           # Pass tuple of strings for multiple options.
<int>  = <str>.find(<sub_str>)               # Returns start index of the first match or -1.
<int>  = <str>.index(<sub_str>)              # Same, but raises ValueError if missing.
<str>  = <str>.replace(old, new [, count])   # Replaces 'old' with 'new' at most 'count' times.
<str>  = <str>.translate(<table>)            # Use `str.maketrans(<dict>)` to generate table.
<str>  = chr(<int>)                          # Converts int to Unicode character.
<int>  = ord(<str>)                          # Converts Unicode character to int.

Property Methods

┏━━━━━━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━┓
┃               │ [ !#$%…] │ [a-zA-Z] │  [¼½¾]   │  [²³¹]   │  [0-9]   ┃
┠───────────────┼──────────┼──────────┼──────────┼──────────┼──────────┨
┃ isprintable() │    ✓     │    ✓     │    ✓     │    ✓     │    ✓     ┃
┃ isalnum()     │          │    ✓     │    ✓     │    ✓     │    ✓     ┃
┃ isnumeric()   │          │          │    ✓     │    ✓     │    ✓     ┃
┃ isdigit()     │          │          │          │    ✓     │    ✓     ┃
┃ isdecimal()   │          │          │          │          │    ✓     ┃
┗━━━━━━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━┛

#Regex

import re
<str>   = re.sub(<regex>, new, text, count=0)  # Substitutes all occurrences with 'new'.
<list>  = re.findall(<regex>, text)            # Returns all occurrences as strings.
<list>  = re.split(<regex>, text, maxsplit=0)  # Use brackets in regex to include the matches.
<Match> = re.search(<regex>, text)             # Searches for first occurrence of the pattern.
<Match> = re.match(<regex>, text)              # Searches only at the beginning of the text.
<iter>  = re.finditer(<regex>, text)           # Returns all occurrences as Match objects.

Match Object

<str>   = <Match>.group()                      # Returns the whole match. Also group(0).
<str>   = <Match>.group(1)                     # Returns part in the first bracket.
<tuple> = <Match>.groups()                     # Returns all bracketed parts.
<int>   = <Match>.start()                      # Returns start index of the match.
<int>   = <Match>.end()                        # Returns exclusive end index of the match.

Special Sequences

'\d' == '[0-9]'                                # Matches decimal characters.
'\w' == '[a-zA-Z0-9_]'                         # Matches alphanumerics and underscore.
'\s' == '[ \t\n\r\f\v]'                        # Matches whitespaces.

#Format

<str> = f'{<el_1>}, {<el_2>}'            # Curly brackets can also contain expressions.
<str> = '{}, {}'.format(<el_1>, <el_2>)  # Or: '{0}, {a}'.format(<el_1>, a=<el_2>)
<str> = '%s, %s' % (<el_1>, <el_2>)      # Redundant and inferior C-style formatting.

Attributes

>>> Person = collections.namedtuple('Person', 'name height')
>>> person = Person('Jean-Luc', 187)
>>> f'{person.height}'
'187'
>>> '{p.height}'.format(p=person)
'187'

General Options

{<el>:<10}                               # '<el>      '
{<el>:^10}                               # '   <el>   '
{<el>:>10}                               # '      <el>'
{<el>:.<10}                              # '<el>......'
{<el>:0}                                 # '<el>'

Strings

{'abcde':10}                             # 'abcde     '
{'abcde':10.3}                           # 'abc       '
{'abcde':.3}                             # 'abc'
{'abcde'!r:10}                           # "'abcde'   "

Numbers

{123456:10}                              # '    123456'
{123456:10,}                             # '   123,456'
{123456:10_}                             # '   123_456'
{123456:+10}                             # '   +123456'
{123456:=+10}                            # '+   123456'
{123456: }                               # ' 123456'
{-123456: }                              # '-123456'

Floats

{1.23456:10.3}                           # '      1.23'
{1.23456:10.3f}                          # '     1.235'
{1.23456:10.3e}                          # ' 1.235e+00'
{1.23456:10.3%}                          # '  123.456%'

Comparison of presentation types:

┏━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓
┃              │    {<float>}   │   {<float>:f}  │   {<float>:e}  │   {<float>:%}  ┃
┠──────────────┼────────────────┼────────────────┼────────────────┼────────────────┨
┃  0.000056789 │   '5.6789e-05' │    '0.000057'  │ '5.678900e-05' │    '0.005679%' ┃
┃  0.00056789  │   '0.00056789' │    '0.000568'  │ '5.678900e-04' │    '0.056789%' ┃
┃  0.0056789   │   '0.0056789'  │    '0.005679'  │ '5.678900e-03' │    '0.567890%' ┃
┃  0.056789    │   '0.056789'   │    '0.056789'  │ '5.678900e-02' │    '5.678900%' ┃
┃  0.56789     │   '0.56789'    │    '0.567890'  │ '5.678900e-01' │   '56.789000%' ┃
┃  5.6789      │   '5.6789'     │    '5.678900'  │ '5.678900e+00' │  '567.890000%' ┃
┃ 56.789       │  '56.789'      │   '56.789000'  │ '5.678900e+01' │ '5678.900000%' ┃
┗━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛

┏━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓
┃              │  {<float>:.2}  │  {<float>:.2f} │  {<float>:.2e} │  {<float>:.2%} ┃
┠──────────────┼────────────────┼────────────────┼────────────────┼────────────────┨
┃  0.000056789 │    '5.7e-05'   │      '0.00'    │   '5.68e-05'   │      '0.01%'   ┃
┃  0.00056789  │    '0.00057'   │      '0.00'    │   '5.68e-04'   │      '0.06%'   ┃
┃  0.0056789   │    '0.0057'    │      '0.01'    │   '5.68e-03'   │      '0.57%'   ┃
┃  0.056789    │    '0.057'     │      '0.06'    │   '5.68e-02'   │      '5.68%'   ┃
┃  0.56789     │    '0.57'      │      '0.57'    │   '5.68e-01'   │     '56.79%'   ┃
┃  5.6789      │    '5.7'       │      '5.68'    │   '5.68e+00'   │    '567.89%'   ┃
┃ 56.789       │    '5.7e+01'   │     '56.79'    │   '5.68e+01'   │   '5678.90%'   ┃
┗━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛

Ints

{90:c}                                   # 'Z'
{90:b}                                   # '1011010'
{90:X}                                   # '5A'

#Numbers

<int>      = int(<float/str/bool>)                # Or: math.floor(<float>)
<float>    = float(<int/str/bool>)                # Or: <real>e±<int>
<complex>  = complex(real=0, imag=0)              # Or: <real> ± <real>j
<Fraction> = fractions.Fraction(0, 1)             # Or: Fraction(numerator=0, denominator=1)
<Decimal>  = decimal.Decimal(<str/int>)           # Or: Decimal((sign, digits, exponent))

Basic Functions

<num> = pow(<num>, <num>)                         # Or: <num> ** <num>
<num> = abs(<num>)                                # <float> = abs(<complex>)
<num> = round(<num> [, ±ndigits])                 # `round(126, -1) == 130`

Math

from math import e, pi, inf, nan, isinf, isnan    # `<el> == nan` is always False.
from math import sin, cos, tan, asin, acos, atan  # Also: degrees, radians.
from math import log, log10, log2                 # Log can accept base as second arg.

Statistics

from statistics import mean, median, variance     # Also: stdev, quantiles, groupby.

Random

from random import random, randint, choice        # Also: shuffle, gauss, triangular, seed.
<float> = random()                                # A float inside [0, 1).
<int>   = randint(from_inc, to_inc)               # An int inside [from_inc, to_inc].
<el>    = choice(<sequence>)                      # Keeps the sequence intact.

Bin, Hex

<int> = ±0b<bin>                                  # Or: ±0x<hex>
<int> = int('±<bin>', 2)                          # Or: int('±<hex>', 16)
<int> = int('±0b<bin>', 0)                        # Or: int('±0x<hex>', 0)
<str> = bin(<int>)                                # Returns '[-]0b<bin>'.

Bitwise Operators

<int> = <int> & <int>                             # And (0b1100 & 0b1010 == 0b1000).
<int> = <int> | <int>                             # Or  (0b1100 | 0b1010 == 0b1110).
<int> = <int> ^ <int>                             # Xor (0b1100 ^ 0b1010 == 0b0110).
<int> = <int> << n_bits                           # Left shift. Use >> for right.
<int> = ~<int>                                    # Not. Also -<int> - 1.

#Combinatorics

import itertools as it
>>> it.product([0, 1], repeat=3)
[(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),
 (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)]
>>> it.product('abc', 'abc')                     #   a  b  c
[('a', 'a'), ('a', 'b'), ('a', 'c'),             # a x  x  x
 ('b', 'a'), ('b', 'b'), ('b', 'c'),             # b x  x  x
 ('c', 'a'), ('c', 'b'), ('c', 'c')]             # c x  x  x
>>> it.combinations('abc', 2)                    #   a  b  c
[('a', 'b'), ('a', 'c'),                         # a .  x  x
 ('b', 'c')]                                     # b .  .  x
>>> it.combinations_with_replacement('abc', 2)   #   a  b  c
[('a', 'a'), ('a', 'b'), ('a', 'c'),             # a x  x  x
 ('b', 'b'), ('b', 'c'),                         # b .  x  x
 ('c', 'c')]                                     # c .  .  x
>>> it.permutations('abc', 2)                    #   a  b  c
[('a', 'b'), ('a', 'c'),                         # a .  x  x
 ('b', 'a'), ('b', 'c'),                         # b x  .  x
 ('c', 'a'), ('c', 'b')]                         # c x  x  .

#Datetime

from datetime import date, time, datetime, timedelta
from dateutil.tz import UTC, tzlocal, gettz, datetime_exists, resolve_imaginary

Constructors

<D>  = date(year, month, day)               # Only accepts valid dates from 1 to 9999 AD.
<T>  = time(hour=0, minute=0, second=0)     # Also: `microsecond=0, tzinfo=None, fold=0`.
<DT> = datetime(year, month, day, hour=0)   # Also: `minute=0, second=0, microsecond=0, …`.
<TD> = timedelta(weeks=0, days=0, hours=0)  # Also: `minutes=0, seconds=0, microsecond=0`.

Now

<D/DTn>  = D/DT.today()                     # Current local date or naive datetime.
<DTn>    = DT.utcnow()                      # Naive datetime from current UTC time.
<DTa>    = DT.now(<tzinfo>)                 # Aware datetime from current tz time.

Timezone

<tzinfo> = UTC                              # UTC timezone. London without DST.
<tzinfo> = tzlocal()                        # Local timezone. Also gettz().
<tzinfo> = gettz('<Continent>/<City>')      # 'Continent/City_Name' timezone or None.
<DTa>    = <DT>.astimezone(<tzinfo>)        # Datetime, converted to the passed timezone.
<Ta/DTa> = <T/DT>.replace(tzinfo=<tzinfo>)  # Unconverted object with a new timezone.

Encode

<D/T/DT> = D/T/DT.fromisoformat('<iso>')    # Object from ISO string. Raises ValueError.
<DT>     = DT.strptime(<str>, '<format>')   # Datetime from str, according to format.
<D/DTn>  = D/DT.fromordinal(<int>)          # D/DTn from days since the Gregorian NYE 1.
<DTn>    = DT.fromtimestamp(<real>)         # Local time DTn from seconds since the Epoch.
<DTa>    = DT.fromtimestamp(<real>, <tz.>)  # Aware datetime from seconds since the Epoch.

Decode

<str>    = <D/T/DT>.isoformat(sep='T')      # Also `timespec='auto/hours/minutes/seconds/…'`.
<str>    = <D/T/DT>.strftime('<format>')    # Custom string representation.
<int>    = <D/DT>.toordinal()               # Days since Gregorian NYE 1, ignoring time and tz.
<float>  = <DTn>.timestamp()                # Seconds since the Epoch, from DTn in local tz.
<float>  = <DTa>.timestamp()                # Seconds since the Epoch, from aware datetime.

Format

>>> dt = datetime.strptime('2015-05-14 23:39:00.00 +2000', '%Y-%m-%d %H:%M:%S.%f %z')
>>> dt.strftime("%A, %dth of %B '%y, %I:%M%p %Z")
"Thursday, 14th of May '15, 11:39PM UTC+02:00"

Arithmetics

<D/DT>   = <D/DT>  ± <TD>                   # Returned datetime can fall into missing hour.
<TD>     = <D/DTn> - <D/DTn>                # Returns the difference, ignoring time jumps.
<TD>     = <DTa>   - <DTa>                  # Ignores time jumps if they share tzinfo object.
<TD>     = <TD>    * <real>                 # Also: <TD> = abs(<TD>) and <TD> = <TD> ±% <TD>.
<float>  = <TD>    / <TD>                   # How many weeks/years there are in TD. Also //.

#Arguments

Inside Function Call

func(<positional_args>)                           # func(0, 0)
func(<keyword_args>)                              # func(x=0, y=0)
func(<positional_args>, <keyword_args>)           # func(0, y=0)

Inside Function Definition

def func(<nondefault_args>): ...                  # def func(x, y): ...
def func(<default_args>): ...                     # def func(x=0, y=0): ...
def func(<nondefault_args>, <default_args>): ...  # def func(x, y=0): ...

#Splat Operator

Inside Function Call

Splat expands a collection into positional arguments, while splatty-splat expands a dictionary into keyword arguments.

args   = (1, 2)
kwargs = {'x': 3, 'y': 4, 'z': 5}
func(*args, **kwargs)

Is the same as:

func(1, 2, x=3, y=4, z=5)

Inside Function Definition

Splat combines zero or more positional arguments into a tuple, while splatty-splat combines zero or more keyword arguments into a dictionary.

def add(*a):
    return sum(a)
>>> add(1, 2, 3)
6

Legal argument combinations:

def f(*args): ...               # f(1, 2, 3)
def f(x, *args): ...            # f(1, 2, 3)
def f(*args, z): ...            # f(1, 2, z=3)
def f(**kwargs): ...            # f(x=1, y=2, z=3)
def f(x, **kwargs): ...         # f(x=1, y=2, z=3) | f(1, y=2, z=3)
def f(*args, **kwargs): ...     # f(x=1, y=2, z=3) | f(1, y=2, z=3) | f(1, 2, z=3) | f(1, 2, 3)
def f(x, *args, **kwargs): ...  # f(x=1, y=2, z=3) | f(1, y=2, z=3) | f(1, 2, z=3) | f(1, 2, 3)
def f(*args, y, **kwargs): ...  # f(x=1, y=2, z=3) | f(1, y=2, z=3)
def f(*, x, y, z): ...          # f(x=1, y=2, z=3)
def f(x, *, y, z): ...          # f(x=1, y=2, z=3) | f(1, y=2, z=3)
def f(x, y, *, z): ...          # f(x=1, y=2, z=3) | f(1, y=2, z=3) | f(1, 2, z=3)

Other Uses

<list>  = [*<coll.> [, ...]]    # Or: list(<collection>) [+ ...]
<tuple> = (*<coll.>, [...])     # Or: tuple(<collection>) [+ ...]
<set>   = {*<coll.> [, ...]}    # Or: set(<collection>) [| ...]
<dict>  = {**<dict> [, ...]}    # Or: dict(**<dict> [, ...])
head, *body, tail = <coll.>     # Head or tail can be omitted.

#Inline

Lambda

<func> = lambda: <return_value>                     # A single statement function.
<func> = lambda <arg_1>, <arg_2>: <return_value>    # Also accepts default arguments.

Comprehensions

<list> = [i+1 for i in range(10)]                   # Or: [1, 2, ..., 10]
<iter> = (i for i in range(10) if i > 5)            # Or: iter([6, 7, 8, 9])
<set>  = {i+5 for i in range(10)}                   # Or: {5, 6, ..., 14}
<dict> = {i: i*2 for i in range(10)}                # Or: {0: 0, 1: 2, ..., 9: 18}
>>> [l+r for l in 'abc' for r in 'abc']
['aa', 'ab', 'ac', ..., 'cc']

Map, Filter, Reduce

from functools import reduce
<iter> = map(lambda x: x + 1, range(10))            # Or: iter([1, 2, ..., 10])
<iter> = filter(lambda x: x > 5, range(10))         # Or: iter([6, 7, 8, 9])
<obj>  = reduce(lambda out, x: out + x, range(10))  # Or: 45

Any, All

<bool> = any(<collection>)                          # Is `bool(<el>)` True for any element.
<bool> = all(<collection>)                          # Is True for all elements or empty.

Conditional Expression

<obj> = <exp> if <condition> else <exp>             # Only one expression gets evaluated.
>>> [a if a else 'zero' for a in (0, 1, 2, 3)]      # `any([0, '', [], None]) == False`
['zero', 1, 2, 3]

Named Tuple, Enum, Dataclass

from collections import namedtuple
Point = namedtuple('Point', 'x y')                  # Creates a tuple's subclass.
point = Point(0, 0)                                 # Returns its instance.
from enum import Enum
Direction = Enum('Direction', 'N E S W')            # Creates an enum.
direction = Direction.N                             # Returns its member.
from dataclasses import make_dataclass
Player = make_dataclass('Player', ['loc', 'dir'])   # Creates a class.
player = Player(point, direction)                   # Returns its instance.

#Imports

import <module>            # Imports a built-in or '<module>.py'.
import <package>           # Imports a built-in or '<package>/__init__.py'.
import <package>.<module>  # Imports a built-in or '<package>/<module>.py'.

#Closure

We have/get a closure in Python when:

def get_multiplier(a):
    def out(b):
        return a * b
    return out
>>> multiply_by_3 = get_multiplier(3)
>>> multiply_by_3(10)
30

Partial

from functools import partial
<function> = partial(<function> [, <arg_1>, <arg_2>, ...])
>>> def multiply(a, b):
...     return a * b
>>> multiply_by_3 = partial(multiply, 3)
>>> multiply_by_3(10)
30

Non-Local

If variable is being assigned to anywhere in the scope, it is regarded as a local variable, unless it is declared as a 'global' or a 'nonlocal'.

def get_counter():
    i = 0
    def out():
        nonlocal i
        i += 1
        return i
    return out
>>> counter = get_counter()
>>> counter(), counter(), counter()
(1, 2, 3)

#Decorator

@decorator_name
def function_that_gets_passed_to_decorator():
    ...

Debugger Example

Decorator that prints function's name every time the function is called.

from functools import wraps

def debug(func):
    @wraps(func)
    def out(*args, **kwargs):
        print(func.__name__)
        return func(*args, **kwargs)
    return out

@debug
def add(x, y):
    return x + y

LRU Cache

Decorator that caches function's return values. All function's arguments must be hashable.

from functools import lru_cache

@lru_cache(maxsize=None)
def fib(n):
    return n if n < 2 else fib(n-2) + fib(n-1)

Parametrized Decorator

A decorator that accepts arguments and returns a normal decorator that accepts a function.

from functools import wraps

def debug(print_result=False):
    def decorator(func):
        @wraps(func)
        def out(*args, **kwargs):
            result = func(*args, **kwargs)
            print(func.__name__, result if print_result else '')
            return result
        return out
    return decorator

@debug(print_result=True)
def add(x, y):
    return x + y

#Class

class <name>:
    def __init__(self, a):
        self.a = a
    def __repr__(self):
        class_name = self.__class__.__name__
        return f'{class_name}({self.a!r})'
    def __str__(self):
        return str(self.a)

    @classmethod
    def get_class_name(cls):
        return cls.__name__

Expressions that call the str() method:

print(<el>)
f'{<el>}'
logging.warning(<el>)
csv.writer(<file>).writerow([<el>])
raise Exception(<el>)

Expressions that call the repr() method:

print/str/repr([<el>])
print/str/repr({<el>: <el>})
f'{<el>!r}'
Z = dataclasses.make_dataclass('Z', ['a']); print/str/repr(Z(<el>))
>>> <el>

Constructor Overloading

class <name>:
    def __init__(self, a=None):
        self.a = a

Inheritance

class Person:
    def __init__(self, name, age):
        self.name = name
        self.age  = age

class Employee(Person):
    def __init__(self, name, age, staff_num):
        super().__init__(name, age)
        self.staff_num = staff_num

Multiple Inheritance

class A: pass
class B: pass
class C(A, B): pass

MRO determines the order in which parent classes are traversed when searching for a method or an attribute:

>>> C.mro()
[<class 'C'>, <class 'A'>, <class 'B'>, <class 'object'>]

Property

Pythonic way of implementing getters and setters.

class Person:
    @property
    def name(self):
        return ' '.join(self._name)

    @name.setter
    def name(self, value):
        self._name = value.split()
>>> person = Person()
>>> person.name = '\t Guido  van Rossum \n'
>>> person.name
'Guido van Rossum'

Dataclass

Decorator that automatically generates init(), repr() and eq() special methods.

from dataclasses import dataclass, field

@dataclass(order=False, frozen=False)
class <class_name>:
    <attr_name_1>: <type>
    <attr_name_2>: <type> = <default_value>
    <attr_name_3>: list/dict/set = field(default_factory=list/dict/set)

Inline:

from dataclasses import make_dataclass
<class> = make_dataclass('<class_name>', <coll_of_attribute_names>)
<class> = make_dataclass('<class_name>', <coll_of_tuples>)
<tuple> = ('<attr_name>', <type> [, <default_value>])

Rest of type annotations (CPython interpreter ignores them all):

def func(<arg_name>: <type> [= <obj>]) -> <type>: ...
<var_name>: typing.List/Set/Iterable/Sequence/Optional[<type>]
<var_name>: typing.Dict/Tuple/Union[<type>, ...]

Slots

Mechanism that restricts objects to attributes listed in 'slots' and significantly reduces their memory footprint.

class MyClassWithSlots:
    __slots__ = ['a']
    def __init__(self):
        self.a = 1

Copy

from copy import copy, deepcopy
<object> = copy(<object>)
<object> = deepcopy(<object>)

#Duck Types

A duck type is an implicit type that prescribes a set of special methods. Any object that has those methods defined is considered a member of that duck type.

Comparable

class MyComparable:
    def __init__(self, a):
        self.a = a
    def __eq__(self, other):
        if isinstance(other, type(self)):
            return self.a == other.a
        return NotImplemented

Hashable

class MyHashable:
    def __init__(self, a):
        self._a = a
    @property
    def a(self):
        return self._a
    def __eq__(self, other):
        if isinstance(other, type(self)):
            return self.a == other.a
        return NotImplemented
    def __hash__(self):
        return hash(self.a)

Sortable

from functools import total_ordering

@total_ordering
class MySortable:
    def __init__(self, a):
        self.a = a
    def __eq__(self, other):
        if isinstance(other, type(self)):
            return self.a == other.a
        return NotImplemented
    def __lt__(self, other):
        if isinstance(other, type(self)):
            return self.a < other.a
        return NotImplemented

Iterator

class Counter:
    def __init__(self):
        self.i = 0
    def __next__(self):
        self.i += 1
        return self.i
    def __iter__(self):
        return self
>>> counter = Counter()
>>> next(counter), next(counter), next(counter)
(1, 2, 3)

Python has many different iterator objects:

Callable

class Counter:
    def __init__(self):
        self.i = 0
    def __call__(self):
        self.i += 1
        return self.i
>>> counter = Counter()
>>> counter(), counter(), counter()
(1, 2, 3)

Context Manager

class MyOpen:
    def __init__(self, filename):
        self.filename = filename
    def __enter__(self):
        self.file = open(self.filename)
        return self.file
    def __exit__(self, exc_type, exception, traceback):
        self.file.close()
>>> with open('test.txt', 'w') as file:
...     file.write('Hello World!')
>>> with MyOpen('test.txt') as file:
...     print(file.read())
Hello World!

#Iterable Duck Types

Iterable

class MyIterable:
    def __init__(self, a):
        self.a = a
    def __iter__(self):
        return iter(self.a)
    def __contains__(self, el):
        return el in self.a
>>> obj = MyIterable([1, 2, 3])
>>> [el for el in obj]
[1, 2, 3]
>>> 1 in obj
True

Collection

class MyCollection:
    def __init__(self, a):
        self.a = a
    def __iter__(self):
        return iter(self.a)
    def __contains__(self, el):
        return el in self.a
    def __len__(self):
        return len(self.a)

Sequence

class MySequence:
    def __init__(self, a):
        self.a = a
    def __iter__(self):
        return iter(self.a)
    def __contains__(self, el):
        return el in self.a
    def __len__(self):
        return len(self.a)
    def __getitem__(self, i):
        return self.a[i]
    def __reversed__(self):
        return reversed(self.a)

Discrepancies between glossary definitions and abstract base classes:

ABC Sequence

from collections import abc

class MyAbcSequence(abc.Sequence):
    def __init__(self, a):
        self.a = a
    def __len__(self):
        return len(self.a)
    def __getitem__(self, i):
        return self.a[i]

Table of required and automatically available special methods:

┏━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━━━┓
┃            │  Iterable  │ Collection │  Sequence  │ abc.Sequence ┃
┠────────────┼────────────┼────────────┼────────────┼──────────────┨
┃ iter()     │     !      │     !      │     ✓      │      ✓       ┃
┃ contains() │     ✓      │     ✓      │     ✓      │      ✓       ┃
┃ len()      │            │     !      │     !      │      !       ┃
┃ getitem()  │            │            │     !      │      !       ┃
┃ reversed() │            │            │     ✓      │      ✓       ┃
┃ index()    │            │            │            │      ✓       ┃
┃ count()    │            │            │            │      ✓       ┃
┗━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━━━┛

#Enum

from enum import Enum, auto
class <enum_name>(Enum):
    <member_name> = auto()
    <member_name> = <value>
    <member_name> = <value>, <value>
<member> = <enum>.<member_name>           # Returns a member.
<member> = <enum>['<member_name>']        # Returns a member. Raises KeyError.
<member> = <enum>(<value>)                # Returns a member. Raises ValueError.
<str>    = <member>.name                  # Returns member's name.
<obj>    = <member>.value                 # Returns member's value.
<list>   = list(<enum>)                   # Returns enum's members.
<list>   = [a.name for a in <enum>]       # Returns enum's member names.
<list>   = [a.value for a in <enum>]      # Returns enum's member values.
<member> = random.choice(list(<enum>))    # Returns a random member.
def get_next_member(member):
    members = list(type(member))
    index = members.index(member) + 1
    return members[index % len(members)]

Inline

Cutlery = Enum('Cutlery', 'FORK KNIFE SPOON')
Cutlery = Enum('Cutlery', ['FORK', 'KNIFE', 'SPOON'])
Cutlery = Enum('Cutlery', {'FORK': 1, 'KNIFE': 2, 'SPOON': 3})

User-defined functions cannot be values, so they must be wrapped:

from functools import partial
LogicOp = Enum('LogicOp', {'AND': partial(lambda l, r: l and r),
                           'OR':  partial(lambda l, r: l or r)})

#Exceptions

try:
    <code>
except <exception>:
    <code>

Complex Example

try:
    <code_1>
except <exception_a>:
    <code_2_a>
except <exception_b>:
    <code_2_b>
else:
    <code_2_c>
finally:
    <code_3>

Catching Exceptions

except <exception>: ...
except <exception> as <name>: ...
except (<exception>, [...]): ...
except (<exception>, [...]) as <name>: ...

Raising Exceptions

raise <exception>
raise <exception>()
raise <exception>(<el> [, ...])

Re-raising caught exception:

except <exception> [as <name>]:
    ...
    raise

Exception Object

arguments = <name>.args
exc_type  = <name>.__class__
filename  = <name>.__traceback__.tb_frame.f_code.co_filename
func_name = <name>.__traceback__.tb_frame.f_code.co_name
line      = linecache.getline(filename, <name>.__traceback__.tb_lineno)
trace_str = ''.join(traceback.format_tb(<name>.__traceback__))
error_msg = ''.join(traceback.format_exception(exc_type, <name>, <name>.__traceback__))

Built-in Exceptions

BaseException
 ├── SystemExit                   # Raised by the sys.exit() function.
 ├── KeyboardInterrupt            # Raised when the user hits the interrupt key (ctrl-c).
 └── Exception                    # User-defined exceptions should be derived from this class.
      ├── ArithmeticError         # Base class for arithmetic errors.
      │    └── ZeroDivisionError  # Raised when dividing by zero.
      ├── AssertionError          # Raised by `assert <exp>` if expression returns false value.
      ├── AttributeError          # Raised when object doesn't have requested attribute/method.
      ├── EOFError                # Raised by input() when it hits an end-of-file condition.
      ├── LookupError             # Base class for errors when a collection can't find an item.
      │    ├── IndexError         # Raised when a sequence index is out of range.
      │    └── KeyError           # Raised when a dictionary key or set element is missing.
      ├── MemoryError             # Out of memory. Could be too late to start deleting vars.
      ├── NameError               # Raised when nonexistent name (variable/func/class) is used.
      │    └── UnboundLocalError  # Raised when local name is used before it's being defined.
      ├── OSError                 # Errors such as FileExistsError/PermissionError (see Open).
      ├── RuntimeError            # Raised by errors that don't fall into other categories.
      │    └── RecursionError     # Raised when the maximum recursion depth is exceeded.
      ├── StopIteration           # Raised by next() when run on an empty iterator.
      ├── TypeError               # Raised when an argument is of the wrong type.
      └── ValueError              # When argument has the right type but inappropriate value.
           └── UnicodeError       # Raised when encoding/decoding strings to/from bytes fails.

Collections and their exceptions:

┏━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━┓
┃           │    List    │    Set     │    Dict    ┃
┠───────────┼────────────┼────────────┼────────────┨
┃ getitem() │ IndexError │            │  KeyError  ┃
┃ pop()     │ IndexError │  KeyError  │  KeyError  ┃
┃ remove()  │ ValueError │  KeyError  │            ┃
┃ index()   │ ValueError │            │            ┃
┗━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┛

Useful built-in exceptions:

raise TypeError('Argument is of the wrong type!')
raise ValueError('Argument has the right type but an inappropriate value!')
raise RuntimeError('None of above!')

User-defined Exceptions

class MyError(Exception): pass
class MyInputError(MyError): pass

#Exit

Exits the interpreter by raising SystemExit exception.

import sys
sys.exit()                        # Exits with exit code 0 (success).
sys.exit(<el>)                    # Prints to stderr and exits with 1.
sys.exit(<int>)                   # Exits with passed exit code.

#Print

print(<el_1>, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

Pretty Print

from pprint import pprint
pprint(<collection>, width=80, depth=None, compact=False, sort_dicts=True)

#Input

Reads a line from the user input or pipe if present.

<str> = input(prompt=None)

#Command Line Arguments

import sys
scripts_path = sys.argv[0]
arguments    = sys.argv[1:]

Argument Parser

from argparse import ArgumentParser, FileType
p = ArgumentParser(description=<str>)
p.add_argument('-<short_name>', '--<name>', action='store_true')  # Flag.
p.add_argument('-<short_name>', '--<name>', type=<type>)          # Option.
p.add_argument('<name>', type=<type>, nargs=1)                    # First argument.
p.add_argument('<name>', type=<type>, nargs='+')                  # Remaining arguments.
p.add_argument('<name>', type=<type>, nargs='*')                  # Optional arguments.
args  = p.parse_args()                                            # Exits on error.
value = args.<name>

#Open

Opens the file and returns a corresponding file object.

<file> = open(<path>, mode='r', encoding=None, newline=None)

Modes

Exceptions

File Object

<file>.seek(0)                      # Moves to the start of the file.
<file>.seek(offset)                 # Moves 'offset' chars/bytes from the start.
<file>.seek(0, 2)                   # Moves to the end of the file.
<bin_file>.seek(±offset, <anchor>)  # Anchor: 0 start, 1 current position, 2 end.
<str/bytes> = <file>.read(size=-1)  # Reads 'size' chars/bytes or until EOF.
<str/bytes> = <file>.readline()     # Returns a line or empty string/bytes on EOF.
<list>      = <file>.readlines()    # Returns a list of remaining lines.
<str/bytes> = next(<file>)          # Returns a line using buffer. Do not mix.
<file>.write(<str/bytes>)           # Writes a string or bytes object.
<file>.writelines(<collection>)     # Writes a coll. of strings or bytes objects.
<file>.flush()                      # Flushes write buffer. Runs every 4096/8192 B.

Read Text from File

def read_file(filename):
    with open(filename, encoding='utf-8') as file:
        return file.readlines()

Write Text to File

def write_to_file(filename, text):
    with open(filename, 'w', encoding='utf-8') as file:
        file.write(text)

#Paths

from os import getcwd, path, listdir, scandir
from glob import glob
<str>  = getcwd()                   # Returns the current working directory.
<str>  = path.join(<path>, ...)     # Joins two or more pathname components.
<str>  = path.abspath(<path>)       # Returns absolute path.
<str>  = path.basename(<path>)      # Returns final component of the path.
<str>  = path.dirname(<path>)       # Returns path without the final component.
<tup.> = path.splitext(<path>)      # Splits on last period of the final component.
<list> = listdir(path='.')          # Returns filenames located at the path.
<list> = glob('<pattern>')          # Returns paths matching the wildcard pattern.
<bool> = path.exists(<path>)        # Or: <Path>.exists()
<bool> = path.isfile(<path>)        # Or: <DirEntry/Path>.is_file()
<bool> = path.isdir(<path>)         # Or: <DirEntry/Path>.is_dir()
<stat> = os.stat(<path>)            # Or: <DirEntry/Path>.stat()
<real> = <stat>.st_mtime/st_size/…  # Modification time, size in bytes, ...

DirEntry

Unlike listdir(), scandir() returns DirEntry objects that cache isfile, isdir and on Windows also stat information, thus significantly increasing the performance of code that requires it.

<iter> = scandir(path='.')          # Returns DirEntry objects located at the path.
<str>  = <DirEntry>.path            # Returns the whole path as a string.
<str>  = <DirEntry>.name            # Returns final component as a string.
<file> = open(<DirEntry>)           # Opens the file and returns a file object.

Path Object

from pathlib import Path
<Path> = Path(<path> [, ...])       # Accepts strings, Paths and DirEntry objects.
<Path> = <path> / <path> [/ ...]    # First or second path must be a Path object.
<Path> = Path()                     # Returns relative cwd. Also Path('.').
<Path> = Path.cwd()                 # Returns absolute cwd. Also Path().resolve().
<Path> = Path.home()                # Returns user's home directory (absolute).
<Path> = Path(__file__).resolve()   # Returns script's path if cwd wasn't changed.
<Path> = <Path>.parent              # Returns Path without the final component.
<str>  = <Path>.name                # Returns final component as a string.
<str>  = <Path>.stem                # Returns final component without extension.
<str>  = <Path>.suffix              # Returns final component's extension.
<tup.> = <Path>.parts               # Returns all components as strings.
<iter> = <Path>.iterdir()           # Returns directory contents as Path objects.
<iter> = <Path>.glob('<pattern>')   # Returns Paths matching the wildcard pattern.
<str>  = str(<Path>)                # Returns path as a string.
<file> = open(<Path>)               # Also <Path>.read/write_text/bytes().

#OS Commands

import os, shutil, subprocess
os.chdir(<path>)                    # Changes the current working directory.
os.mkdir(<path>, mode=0o777)        # Creates a directory. Permissions are in octal.
os.makedirs(<path>, mode=0o777)     # Creates all path's dirs. Also: `exist_ok=False`.
shutil.copy(from, to)               # Copies the file. 'to' can exist or be a dir.
shutil.copytree(from, to)           # Copies the directory. 'to' must not exist.
os.rename(from, to)                 # Renames/moves the file or directory.
os.replace(from, to)                # Same, but overwrites 'to' if it exists.
os.remove(<path>)                   # Deletes the file.
os.rmdir(<path>)                    # Deletes the empty directory.
shutil.rmtree(<path>)               # Deletes the directory.

Shell Commands

<pipe> = os.popen('<command>')      # Executes command in sh/cmd. Returns its stdout pipe.
<str>  = <pipe>.read(size=-1)       # Reads 'size' chars or until EOF. Also readline/s().
<int>  = <pipe>.close()             # Closes the pipe. Returns None on success (returncode 0).

Sends '1 + 1' to the basic calculator and captures its output:

>>> subprocess.run('bc', input='1 + 1\n', capture_output=True, text=True)
CompletedProcess(args='bc', returncode=0, stdout='2\n', stderr='')

Sends test.in to the basic calculator running in standard mode and saves its output to test.out:

>>> from shlex import split
>>> os.popen('echo 1 + 1 > test.in')
>>> subprocess.run(split('bc -s'), stdin=open('test.in'), stdout=open('test.out', 'w'))
CompletedProcess(args=['bc', '-s'], returncode=0)
>>> open('test.out').read()
'2\n'

#JSON

Text file format for storing collections of strings and numbers.

import json
<str>    = json.dumps(<object>)     # Converts object to JSON string.
<object> = json.loads(<str>)        # Converts JSON string to object.

Read Object from JSON File

def read_json_file(filename):
    with open(filename, encoding='utf-8') as file:
        return json.load(file)

Write Object to JSON File

def write_to_json_file(filename, an_object):
    with open(filename, 'w', encoding='utf-8') as file:
        json.dump(an_object, file, ensure_ascii=False, indent=2)

#Pickle

Binary file format for storing Python objects.

import pickle
<bytes>  = pickle.dumps(<object>)   # Converts object to bytes object.
<object> = pickle.loads(<bytes>)    # Converts bytes object to object.

Read Object from File

def read_pickle_file(filename):
    with open(filename, 'rb') as file:
        return pickle.load(file)

Write Object to File

def write_to_pickle_file(filename, an_object):
    with open(filename, 'wb') as file:
        pickle.dump(an_object, file)

#CSV

Text file format for storing spreadsheets.

import csv

Read

<reader> = csv.reader(<file>)       # Also: `dialect='excel', delimiter=','`.
<list>   = next(<reader>)           # Returns next row as a list of strings.
<list>   = list(<reader>)           # Returns a list of remaining rows.

Write

<writer> = csv.writer(<file>)       # Also: `dialect='excel', delimiter=','`.
<writer>.writerow(<collection>)     # Encodes objects using `str(<el>)`.
<writer>.writerows(<coll_of_coll>)  # Appends multiple rows.

Parameters

Dialects

┏━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━┓
┃                  │     excel    │   excel-tab  │     unix     ┃
┠──────────────────┼──────────────┼──────────────┼──────────────┨
┃ delimiter        │       ','    │      '\t'    │       ','    ┃
┃ quotechar        │       '"'    │       '"'    │       '"'    ┃
┃ doublequote      │      True    │      True    │      True    ┃
┃ skipinitialspace │     False    │     False    │     False    ┃
┃ lineterminator   │    '\r\n'    │    '\r\n'    │      '\n'    ┃
┃ quoting          │         0    │         0    │         1    ┃
┃ escapechar       │      None    │      None    │      None    ┃
┗━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━┛

Read Rows from CSV File

def read_csv_file(filename, dialect='excel'):
    with open(filename, encoding='utf-8', newline='') as file:
        return list(csv.reader(file, dialect))

Write Rows to CSV File

def write_to_csv_file(filename, rows, dialect='excel'):
    with open(filename, 'w', encoding='utf-8', newline='') as file:
        writer = csv.writer(file, dialect)
        writer.writerows(rows)

#SQLite

A server-less database engine that stores each database into a separate file.

import sqlite3
<conn> = sqlite3.connect(<path>)                # Opens existing or new file. Also ':memory:'.
<conn>.close()                                  # Closes the connection.

Read

<cursor> = <conn>.execute('<query>')            # Can raise a subclass of sqlite3.Error.
<tuple>  = <cursor>.fetchone()                  # Returns next row. Also next(<cursor>).
<list>   = <cursor>.fetchall()                  # Returns remaining rows. Also list(<cursor>).

Write

<conn>.execute('<query>')                       # Can raise a subclass of sqlite3.Error.
<conn>.commit()                                 # Saves all changes since the last commit.
<conn>.rollback()                               # Discards all changes since the last commit.

Or:

with <conn>:                                    # Exits the block with commit() or rollback(),
    <conn>.execute('<query>')                   # depending on whether any exception occurred.

Placeholders

<conn>.execute('<query>', <list/tuple>)         # Replaces '?'s in query with values.
<conn>.execute('<query>', <dict/namedtuple>)    # Replaces ':<key>'s with values.
<conn>.executemany('<query>', <coll_of_above>)  # Runs execute() multiple times.

Example

Values are not actually saved in this example because 'conn.commit()' is omitted!

>>> conn = sqlite3.connect('test.db')
>>> conn.execute('CREATE TABLE person (person_id INTEGER PRIMARY KEY, name, height)')
>>> conn.execute('INSERT INTO person VALUES (NULL, ?, ?)', ('Jean-Luc', 187)).lastrowid
1
>>> conn.execute('SELECT * FROM person').fetchall()
[(1, 'Jean-Luc', 187)]

SqlAlchemy

# $ pip3 install sqlalchemy
from sqlalchemy import create_engine, text
<engine> = create_engine('<url>')               # Url: 'dialect://user:password@host/dbname'.
<conn>   = <engine>.connect()                   # Creates a connection. Also <conn>.close().
<cursor> = <conn>.execute(text('<query>'), …)   # Replaces ':<key>'s with keyword arguments.
with <conn>.begin(): ...                        # Exits the block with commit or rollback.
┏━━━━━━━━━━━━┯━━━━━━━━━━━━━━┯━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Dialect    │ pip3 install │ import    │ Dependencies                     ┃
┠────────────┼──────────────┼───────────┼──────────────────────────────────┨
┃ mysql      │ mysqlclient  │ MySQLdb   │ www.pypi.org/project/mysqlclient ┃
┃ postgresql │ psycopg2     │ psycopg2  │ www.pypi.org/project/psycopg2    ┃
┃ mssql      │ pyodbc       │ pyodbc    │ www.pypi.org/project/pyodbc      ┃
┃ oracle     │ oracledb     │ oracledb  │ www.pypi.org/project/oracledb    ┃
┗━━━━━━━━━━━━┷━━━━━━━━━━━━━━┷━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛

#Bytes

Bytes object is an immutable sequence of single bytes. Mutable version is called bytearray.

<bytes> = b'<str>'                          # Only accepts ASCII characters and \x00-\xff.
<int>   = <bytes>[<index>]                  # Returns an int in range from 0 to 255.
<bytes> = <bytes>[<slice>]                  # Returns bytes even if it has only one element.
<bytes> = <bytes>.join(<coll_of_bytes>)     # Joins elements using bytes as a separator.

Encode

<bytes> = bytes(<coll_of_ints>)             # Ints must be in range from 0 to 255.
<bytes> = bytes(<str>, 'utf-8')             # Or: <str>.encode('utf-8')
<bytes> = <int>.to_bytes(n_bytes, …)        # `byteorder='big/little', signed=False`.
<bytes> = bytes.fromhex('<hex>')            # Hex pairs can be separated by whitespaces.

Decode

<list>  = list(<bytes>)                     # Returns ints in range from 0 to 255.
<str>   = str(<bytes>, 'utf-8')             # Or: <bytes>.decode('utf-8')
<int>   = int.from_bytes(<bytes>, …)        # `byteorder='big/little', signed=False`.
'<hex>' = <bytes>.hex()                     # Returns hex pairs. Accepts `sep=<str>`.

Read Bytes from File

def read_bytes(filename):
    with open(filename, 'rb') as file:
        return file.read()

Write Bytes to File

def write_bytes(filename, bytes_obj):
    with open(filename, 'wb') as file:
        file.write(bytes_obj)

#Struct

from struct import pack, unpack
<bytes> = pack('<format>', <el_1> [, ...])  # Packages arguments or raises struct.error.
<tuple> = unpack('<format>', <bytes>)       # Use iter_unpack() for iterator of tuples.
>>> pack('>hhl', 1, 2, 3)
b'\x00\x01\x00\x02\x00\x00\x00\x03'
>>> unpack('>hhl', b'\x00\x01\x00\x02\x00\x00\x00\x03')
(1, 2, 3)

Format

For standard type sizes and manual alignment (padding) start format string with:

Besides numbers, pack() and unpack() also support bytes objects as part of the sequence:

Integer types. Use a capital letter for unsigned type. Minimum and standard sizes are in brackets:

Floating point types:

#Array

List that can only hold numbers of a predefined type. Available types and their minimum sizes in bytes are listed above. Sizes and byte order are always determined by the system, however bytes of each element can be swapped with byteswap() method.

from array import array
<array> = array('<typecode>', <collection>)    # Array from collection of numbers.
<array> = array('<typecode>', <bytes>)         # Array from bytes object.
<array> = array('<typecode>', <array>)         # Treats array as a sequence of numbers.
<bytes> = bytes(<array>)                       # Or: <array>.tobytes()
<file>.write(<array>)                          # Writes array to the binary file.

#Memory View

<mview> = memoryview(<bytes/bytearray/array>)  # Immutable if bytes, else mutable.
<real>  = <mview>[<index>]                     # Returns an int or a float.
<mview> = <mview>[<slice>]                     # Mview with rearranged elements.
<mview> = <mview>.cast('<typecode>')           # Casts memoryview to the new format.
<mview>.release()                              # Releases the object's memory buffer.
<bytes> = bytes(<mview>)                       # Returns a new bytes object.
<bytes> = <bytes>.join(<coll_of_mviews>)       # Joins mviews using bytes object as sep.
<array> = array('<typecode>', <mview>)         # Treats mview as a sequence of numbers.
<file>.write(<mview>)                          # Writes mview to the binary file.
<list>  = list(<mview>)                        # Returns a list of ints or floats.
<str>   = str(<mview>, 'utf-8')                # Treats mview as a bytes object.
<int>   = int.from_bytes(<mview>, …)           # `byteorder='big/little', signed=False`.
'<hex>' = <mview>.hex()                        # Treats mview as a bytes object.

#Deque

A thread-safe list with efficient appends and pops from either side. Pronounced "deck".

from collections import deque
<deque> = deque(<collection>, maxlen=None)
<deque>.appendleft(<el>)                       # Opposite element is dropped if full.
<deque>.extendleft(<collection>)               # Collection gets reversed.
<el> = <deque>.popleft()                       # Raises IndexError if empty.
<deque>.rotate(n=1)                            # Rotates elements to the right.

#Threading

from threading import Thread, RLock, Semaphore, Event, Barrier
from concurrent.futures import ThreadPoolExecutor, as_completed

Thread

<Thread> = Thread(target=<function>)           # Use `args=<collection>` to set the arguments.
<Thread>.start()                               # Starts the thread.
<bool> = <Thread>.is_alive()                   # Checks if the thread has finished executing.
<Thread>.join()                                # Waits for the thread to finish.

Lock

<lock> = RLock()                               # Lock that can only be released by acquirer.
<lock>.acquire()                               # Waits for the lock to be available.
<lock>.release()                               # Makes the lock available again.

Or:

with <lock>:                                   # Enters the block by calling acquire(),
    ...                                        # and exits it with release(), even on error.

Semaphore, Event, Barrier

<Semaphore> = Semaphore(value=1)               # Lock that can be acquired by 'value' threads.
<Event>     = Event()                          # Method wait() blocks until set() is called.
<Barrier>   = Barrier(n_times)                 # Wait() blocks until it's called n_times.

Thread Pool Executor

<Exec> = ThreadPoolExecutor(max_workers=None)  # Or: `with ThreadPoolExecutor() as <name>: …`
<Exec>.shutdown(wait=True)                     # Blocks until all threads finish executing.
<iter> = <Exec>.map(<func>, <args_1>, ...)     # A multithreaded and non-lazy map().
<Futr> = <Exec>.submit(<func>, <arg_1>, ...)   # Starts a thread and returns its Future object.
<bool> = <Futr>.done()                         # Checks if the thread has finished executing.
<obj>  = <Futr>.result()                       # Waits for thread to finish and returns result.
<iter> = as_completed(<coll_of_Futr>)          # Each Future is yielded as it completes.

Queue

A thread-safe FIFO queue. For LIFO queue use LifoQueue.

from queue import Queue
<Queue> = Queue(maxsize=0)
<Queue>.put(<el>)                              # Blocks until queue stops being full.
<Queue>.put_nowait(<el>)                       # Raises queue.Full exception if full.
<el> = <Queue>.get()                           # Blocks until queue stops being empty.
<el> = <Queue>.get_nowait()                    # Raises queue.Empty exception if empty.

#Operator

Module of functions that provide the functionality of operators.

import operator as op
<obj>     = op.add/sub/mul/truediv/floordiv/mod(<obj>, <obj>)     # +, -, *, /, //, %
<int/set> = op.and_/or_/xor(<int/set>, <int/set>)                 # &, |, ^
<bool>    = op.eq/ne/lt/le/gt/ge(<sortable>, <sortable>)          # ==, !=, <, <=, >, >=
<func>    = op.itemgetter/attrgetter/methodcaller(<obj> [, ...])  # [index/key], .name, .name()
elementwise_sum  = map(op.add, list_a, list_b)
sorted_by_second = sorted(<collection>, key=op.itemgetter(1))
sorted_by_both   = sorted(<collection>, key=op.itemgetter(1, 0))
product_of_elems = functools.reduce(op.mul, <collection>)
union_of_sets    = functools.reduce(op.or_, <coll_of_sets>)
first_element    = op.methodcaller('pop', 0)(<list>)

#Introspection

Inspecting code at runtime.

Variables

<list> = dir()                             # Names of local variables (incl. functions).
<dict> = vars()                            # Dict of local variables. Also locals().
<dict> = globals()                         # Dict of global variables.

Attributes

<list> = dir(<object>)                     # Names of object's attributes (incl. methods).
<dict> = vars(<object>)                    # Dict of writable attributes. Also <obj>.__dict__.
<bool> = hasattr(<object>, '<attr_name>')  # Checks if getattr() raises an AttributeError.
value  = getattr(<object>, '<attr_name>')  # Raises AttributeError if attribute is missing.
setattr(<object>, '<attr_name>', value)    # Only works on objects with '__dict__' attribute.
delattr(<object>, '<attr_name>')           # Same. Also `del <object>.<attr_name>`.

Parameters

<Sig>  = inspect.signature(<function>)     # Function's Signature object.
<dict> = <Sig>.parameters                  # Dict of Parameter objects.
<memb> = <Param>.kind                      # Member of ParameterKind enum.
<obj>  = <Param>.default                   # Default value or Parameter.empty.
<type> = <Param>.annotation                # Type or Parameter.empty.

#Metaprogramming

Code that generates code.

Type

Type is the root class. If only passed an object it returns its type (class). Otherwise it creates a new class.

<class> = type('<class_name>', <tuple_of_parents>, <dict_of_class_attributes>)
>>> Z = type('Z', (), {'a': 'abcde', 'b': 12345})
>>> z = Z()

Meta Class

A class that creates classes.

def my_meta_class(name, parents, attrs):
    attrs['a'] = 'abcde'
    return type(name, parents, attrs)

Or:

class MyMetaClass(type):
    def __new__(cls, name, parents, attrs):
        attrs['a'] = 'abcde'
        return type.__new__(cls, name, parents, attrs)

Metaclass Attribute

Right before a class is created it checks if it has the 'metaclass' attribute defined. If not, it recursively checks if any of his parents has it defined and eventually comes to type().

class MyClass(metaclass=MyMetaClass):
    b = 12345
>>> MyClass.a, MyClass.b
('abcde', 12345)

Type Diagram

type(MyClass) == MyMetaClass         # MyClass is an instance of MyMetaClass.
type(MyMetaClass) == type            # MyMetaClass is an instance of type.
┏━━━━━━━━━━━━━┯━━━━━━━━━━━━━┓
┃   Classes   │ Metaclasses ┃
┠─────────────┼─────────────┨
┃   MyClass ←──╴MyMetaClass ┃
┃             │     ↑       ┃
┃    object ←─────╴type ←╮  ┃
┃             │     │ ╰──╯  ┃
┃     str ←─────────╯       ┃
┗━━━━━━━━━━━━━┷━━━━━━━━━━━━━┛

Inheritance Diagram

MyClass.__base__ == object           # MyClass is a subclass of object.
MyMetaClass.__base__ == type         # MyMetaClass is a subclass of type.
┏━━━━━━━━━━━━━┯━━━━━━━━━━━━━┓
┃   Classes   │ Metaclasses ┃
┠─────────────┼─────────────┨
┃   MyClass   │ MyMetaClass ┃
┃      ↑      │     ↑       ┃
┃    object╶─────→ type     ┃
┃      ↓      │             ┃
┃     str     │             ┃
┗━━━━━━━━━━━━━┷━━━━━━━━━━━━━┛

#Eval

>>> from ast import literal_eval
>>> literal_eval('[1, 2, 3]')
[1, 2, 3]
>>> literal_eval('1 + 2')
ValueError: malformed node or string

#Coroutines

Runs a terminal game where you control an asterisk that must avoid numbers:

import asyncio, collections, curses, curses.textpad, enum, random

P = collections.namedtuple('P', 'x y')         # Position
D = enum.Enum('D', 'n e s w')                  # Direction
W, H = 15, 7                                   # Width, Height

def main(screen):
    curses.curs_set(0)                         # Makes cursor invisible.
    screen.nodelay(True)                       # Makes getch() non-blocking.
    asyncio.run(main_coroutine(screen))        # Starts running asyncio code.

async def main_coroutine(screen):
    moves = asyncio.Queue()
    state = {'*': P(0, 0), **{id_: P(W//2, H//2) for id_ in range(10)}}
    ai    = [random_controller(id_, moves) for id_ in range(10)]
    mvc   = [human_controller(screen, moves), model(moves, state), view(state, screen)]
    tasks = [asyncio.create_task(cor) for cor in ai + mvc]
    await asyncio.wait(tasks, return_when=asyncio.FIRST_COMPLETED)

async def random_controller(id_, moves):
    while True:
        d = random.choice(list(D))
        moves.put_nowait((id_, d))
        await asyncio.sleep(random.triangular(0.01, 0.65))

async def human_controller(screen, moves):
    while True:
        ch = screen.getch()
        key_mappings = {258: D.s, 259: D.n, 260: D.w, 261: D.e}
        if ch in key_mappings:
            moves.put_nowait(('*', key_mappings[ch]))
        await asyncio.sleep(0.005)

async def model(moves, state):
    while state['*'] not in (state[id_] for id_ in range(10)):
        id_, d = await moves.get()
        x, y   = state[id_]
        deltas = {D.n: P(0, -1), D.e: P(1, 0), D.s: P(0, 1), D.w: P(-1, 0)}
        state[id_] = P((x + deltas[d].x) % W, (y + deltas[d].y) % H)

async def view(state, screen):
    offset = P(curses.COLS//2 - W//2, curses.LINES//2 - H//2)
    while True:
        screen.erase()
        curses.textpad.rectangle(screen, offset.y-1, offset.x-1, offset.y+H, offset.x+W)
        for id_, p in state.items():
            screen.addstr(offset.y + (p.y - state['*'].y + H//2) % H,
                          offset.x + (p.x - state['*'].x + W//2) % W, str(id_))
        await asyncio.sleep(0.005)

if __name__ == '__main__':
    curses.wrapper(main)


Libraries

#Progress Bar

# $ pip3 install tqdm
>>> from tqdm import tqdm
>>> from time import sleep
>>> for el in tqdm([1, 2, 3], desc='Processing'):
...     sleep(1)
Processing: 100%|████████████████████| 3/3 [00:03<00:00,  1.00s/it]

#Plot

# $ pip3 install matplotlib
import matplotlib.pyplot as plt
plt.plot/bar/scatter(x_data, y_data [, label=<str>])  # Or: plt.plot(y_data)
plt.legend()                                          # Adds a legend.
plt.savefig(<path>)                                   # Saves the figure.
plt.show()                                            # Displays the figure.
plt.clf()                                             # Clears the figure.

#Table

Prints a CSV file as an ASCII table:

# $ pip3 install tabulate
import csv, tabulate
with open('test.csv', encoding='utf-8', newline='') as file:
    rows   = csv.reader(file)
    header = next(rows)
    table  = tabulate.tabulate(rows, header)
print(table)

#Curses

Runs a basic file explorer in the terminal:

import curses, curses.ascii, os
from curses import A_REVERSE, KEY_DOWN, KEY_UP, KEY_LEFT, KEY_RIGHT, KEY_ENTER

def main(screen):
    ch, first, selected, paths = 0, 0, 0, os.listdir()
    while ch != curses.ascii.ESC:
        height, width = screen.getmaxyx()
        screen.erase()
        for y, filename in enumerate(paths[first : first+height]):
            color = A_REVERSE if filename == paths[selected] else 0
            screen.addstr(y, 0, filename[:width-1], color)
        ch = screen.getch()
        selected += (ch == KEY_DOWN) - (ch == KEY_UP)
        selected = max(0, min(len(paths)-1, selected))
        first += (selected >= first + height) - (selected < first)
        if ch in [KEY_LEFT, KEY_RIGHT, KEY_ENTER, ord('\n'), ord('\r')]:
            new_dir = '..' if ch == KEY_LEFT else paths[selected]
            if os.path.isdir(new_dir):
                os.chdir(new_dir)
                first, selected, paths = 0, 0, os.listdir()

if __name__ == '__main__':
    curses.wrapper(main)

#Logging

import logging
logging.basicConfig(filename=<path>)              # Configures the root logger.
logging.debug/info/warning/error/critical(<str>)  # Logs to the root logger.
<Logger> = logging.getLogger(__name__)            # Logger named after the module.
<Logger>.<level>(<str>)                           # Messages propagate to the root logger.
<Logger>.exception(<str>)                         # Calls error() with caught exception.

Setup

logging.basicConfig(
    filename=None,                                # Logs to console by default.
    format='%(levelname)s:%(name)s:%(message)s',  # Add `%(asctime)s` for datetime.
    level=logging.WARNING,                        # Drops messages with lower priority.
    handlers=[logging.StreamHandler()]            # Uses FileHandler if filename is set.
)
<Formatter> = logging.Formatter('<format>')       # Creates a Formatter.
<Handler> = logging.FileHandler(<path>)           # Creates a Handler.
<Handler>.setFormatter(<Formatter>)               # Adds Formatter to the Handler.
<Handler>.setLevel(<int/str>)                     # Processes all messages by default.
<Logger>.addHandler(<Handler>)                    # Adds Handler to the Logger.
<Logger>.setLevel(<int/str>)                      # What is sent to handlers and parent.

Creates a logger that writes all messages to a file and sends them to the root logger that prints to stdout:

>>> logging.basicConfig(level='WARNING')
>>> logger = logging.getLogger('my_module')
>>> handler = logging.FileHandler('test.log')
>>> formatter = logging.Formatter('%(asctime)s %(levelname)s:%(name)s:%(message)s')
>>> handler.setFormatter(formatter)
>>> logger.addHandler(handler)
>>> logger.critical('Running out of disk space.')
CRITICAL:my_module:Running out of disk space.
>>> open('test.log').read()
2023-02-07 23:21:01,430 CRITICAL:my_module:Running out of disk space.

#Scraping

Scrapes Python's URL, version number and logo from its Wikipedia page:

# $ pip3 install requests beautifulsoup4
import requests, bs4, os, sys

WIKI_URL = 'https://en.wikipedia.org/wiki/Python_(programming_language)'
try:
    html       = requests.get(WIKI_URL).text
    document   = bs4.BeautifulSoup(html, 'html.parser')
    table      = document.find('table', class_='infobox vevent')
    python_url = table.find('th', text='Website').next_sibling.a['href']
    version    = table.find('th', text='Stable release').next_sibling.strings.__next__()
    logo_url   = table.find('img')['src']
    logo       = requests.get(f'https:{logo_url}').content
    filename   = os.path.basename(logo_url)
    with open(filename, 'wb') as file:
        file.write(logo)
    print(f'{python_url}, {version}, file://{os.path.abspath(filename)}')
except requests.exceptions.ConnectionError:
    print("You've got problems with connection.", file=sys.stderr)

#Web

Flask is a micro web framework/server. If you just want to open a html file in a web browser use 'webbrowser.open(<path>)' instead.

# $ pip3 install flask
from flask import Flask, send_from_directory, render_template_string, request
app = Flask(__name__)
app.run()

Static Request

@app.route('/img/<path:filename>')
def serve_file(filename):
    return send_from_directory('dirname/', filename)

Dynamic Request

@app.route('/<sport>')
def serve_html(sport):
    return render_template_string('<h1>{{title}}</h1>', title=sport)

REST Request

@app.route('/<sport>/odds', methods=['POST'])
def serve_json(sport):
    team = request.form['team']
    return {'team': team, 'odds': [2.09, 3.74, 3.68]}

Test:

# $ pip3 install requests
>>> import threading, requests
>>> threading.Thread(target=app.run, daemon=True).start()
>>> url = 'http://localhost:5000/football/odds'
>>> request_data = {'team': 'arsenal f.c.'}
>>> response = requests.post(url, data=request_data)
>>> response.json()
{'team': 'arsenal f.c.', 'odds': [2.09, 3.74, 3.68]}

#Profiling

from time import perf_counter
start_time = perf_counter()
...
duration_in_seconds = perf_counter() - start_time

Timing a Snippet

>>> from timeit import timeit
>>> timeit("''.join(str(i) for i in range(100))",
...        number=10000, globals=globals(), setup='pass')
0.34986

Profiling by Line

# $ pip3 install line_profiler memory_profiler
@profile
def main():
    a = [*range(10000)]
    b = {*range(10000)}
main()
$ kernprof -lv test.py
Line #   Hits     Time  Per Hit   % Time  Line Contents
=======================================================
     1                                    @profile
     2                                    def main():
     3      1    955.0    955.0     43.7      a = [*range(10000)]
     4      1   1231.0   1231.0     56.3      b = {*range(10000)}

$ python3 -m memory_profiler test.py
Line #         Mem usage      Increment   Line Contents
=======================================================
     1        37.668 MiB     37.668 MiB   @profile
     2                                    def main():
     3        38.012 MiB      0.344 MiB       a = [*range(10000)]
     4        38.477 MiB      0.465 MiB       b = {*range(10000)}

Call Graph

Generates a PNG image of the call graph with highlighted bottlenecks:

# $ pip3 install pycallgraph2; apt/brew install graphviz
import pycallgraph2 as cg, datetime

filename = f'profile-{datetime.datetime.now():%Y%m%d_%H%M%S}.png'
drawer = cg.output.GraphvizOutput(output_file=filename)
with cg.PyCallGraph(drawer):
    <code_to_be_profiled>

#NumPy

Array manipulation mini-language. It can run up to one hundred times faster than the equivalent Python code. An even faster alternative that runs on a GPU is called CuPy.

# $ pip3 install numpy
import numpy as np
<array> = np.array(<list/list_of_lists>)                # Returns a 1d/2d NumPy array.
<array> = np.zeros/ones(<shape>)                        # Also np.full(<shape>, <el>).
<array> = np.arange(from_inc, to_exc, ±step)            # Also np.linspace(start, stop, len).
<array> = np.random.randint(from_inc, to_exc, <shape>)  # Also np.random.random(<shape>).
<view>  = <array>.reshape(<shape>)                      # Also `<array>.shape = <shape>`.
<array> = <array>.flatten()                             # Also `<view> = <array>.ravel()`.
<view>  = <array>.transpose()                           # Or: <array>.T
<array> = np.copy/abs/sqrt/log/int64(<array>)           # Returns new array of the same shape.
<array> = <array>.sum/max/mean/argmax/all(axis)         # Passed dimension gets aggregated.
<array> = np.apply_along_axis(<func>, axis, <array>)    # Func can return a scalar or array.
<array> = np.concatenate(<list_of_arrays>, axis=0)      # Links arrays along first axis (rows).
<array> = np.row_stack/column_stack(<list_of_arrays>)   # Treats 1d arrays as rows or columns.
<array> = np.tile/repeat(<array>, <int/list>)           # Tiles array or repeats its elements.

Indexing

<el>       = <2d_array>[row_index, column_index]        # <3d_a>[table_i, row_i, column_i]
<1d_view>  = <2d_array>[row_index]                      # <3d_a>[table_i, row_i]
<1d_view>  = <2d_array>[:, column_index]                # <3d_a>[table_i, :, column_i]
<2d_view>  = <2d_array>[rows_slice, columns_slice]      # <3d_a>[table_i, rows_s, columns_s]
<2d_array> = <2d_array>[row_indexes]                    # <3d_a>[table_i/is, row_is]
<2d_array> = <2d_array>[:, column_indexes]              # <3d_a>[table_i/is, :, column_is]
<1d_array> = <2d_array>[row_indexes, column_indexes]    # <3d_a>[table_i/is, row_is, column_is]
<1d_array> = <2d_array>[row_indexes, column_index]      # <3d_a>[table_i/is, row_is, column_i]
<2d_bools> = <2d_array> ><== <el/1d/2d_array>           # 1d_array must have size of a row.
<1d/2d_a>  = <2d_array>[<2d/1d_bools>]                  # 1d_bools must have size of a column.

Broadcasting

Set of rules by which NumPy functions operate on arrays of different sizes and/or dimensions.

left  = [[0.1], [0.6], [0.8]]                           # Shape: (3, 1)
right = [ 0.1 ,  0.6 ,  0.8 ]                           # Shape: (3,)

1. If array shapes differ in length, left-pad the shorter shape with ones:

left  = [[0.1], [0.6], [0.8]]                           # Shape: (3, 1)
right = [[0.1 ,  0.6 ,  0.8]]                           # Shape: (1, 3) <- !

2. If any dimensions differ in size, expand the ones that have size 1 by duplicating their elements:

left  = [[0.1,  0.1,  0.1],                             # Shape: (3, 3) <- !
         [0.6,  0.6,  0.6],
         [0.8,  0.8,  0.8]]

right = [[0.1,  0.6,  0.8],                             # Shape: (3, 3) <- !
         [0.1,  0.6,  0.8],
         [0.1,  0.6,  0.8]]

Example

For each point returns index of its nearest point ([0.1, 0.6, 0.8] => [1, 2, 1]):

>>> points = np.array([0.1, 0.6, 0.8])
 [ 0.1,  0.6,  0.8]
>>> wrapped_points = points.reshape(3, 1)
[[ 0.1],
 [ 0.6],
 [ 0.8]]
>>> distances = wrapped_points - points
[[ 0. , -0.5, -0.7],
 [ 0.5,  0. , -0.2],
 [ 0.7,  0.2,  0. ]]
>>> distances = np.abs(distances)
[[ 0. ,  0.5,  0.7],
 [ 0.5,  0. ,  0.2],
 [ 0.7,  0.2,  0. ]]
>>> i = np.arange(3)
[0, 1, 2]
>>> distances[i, i] = np.inf
[[ inf,  0.5,  0.7],
 [ 0.5,  inf,  0.2],
 [ 0.7,  0.2,  inf]]
>>> distances.argmin(1)
[1, 2, 1]

#Image

# $ pip3 install pillow
from PIL import Image, ImageDraw
<Image> = Image.new('<mode>', (width, height))  # Also `color=<int/tuple/str>`.
<Image> = Image.open(<path>)                    # Identifies format based on file contents.
<Image> = <Image>.convert('<mode>')             # Converts image to the new mode.
<Image>.save(<path>)                            # Selects format based on the path extension.
<Image>.show()                                  # Opens image in the default preview app.
<int/tuple> = <Image>.getpixel((x, y))          # Returns a pixel.
<Image>.putpixel((x, y), <int/tuple>)           # Writes a pixel to the image.
<ImagingCore> = <Image>.getdata()               # Returns a flattened sequence of pixels.
<Image>.putdata(<list/ImagingCore>)             # Writes a flattened sequence of pixels.
<Image>.paste(<Image>, (x, y))                  # Writes passed image to the image.
<Image> = <Image>.filter(<Filter>)              # `<Filter> = ImageFilter.<name>([<args>])`
<Image> = <Enhance>.enhance(<float>)            # `<Enhance> = ImageEnhance.<name>(<Image>)`
<array> = np.array(<Image>)                     # Creates NumPy array from the image.
<Image> = Image.fromarray(np.uint8(<array>))    # Use <array>.clip(0, 255) to clip the values.

Modes

Examples

Creates a PNG image of a rainbow gradient:

WIDTH, HEIGHT = 100, 100
n_pixels = WIDTH * HEIGHT
hues = (255 * i/n_pixels for i in range(n_pixels))
img = Image.new('HSV', (WIDTH, HEIGHT))
img.putdata([(int(h), 255, 255) for h in hues])
img.convert('RGB').save('test.png')

Adds noise to a PNG image:

from random import randint
add_noise = lambda value: max(0, min(255, value + randint(-20, 20)))
img = Image.open('test.png').convert('HSV')
img.putdata([(add_noise(h), s, v) for h, s, v in img.getdata()])
img.show()

Image Draw

<ImageDraw> = ImageDraw.Draw(<Image>)           # Object for adding 2D graphics to the image.
<ImageDraw>.point((x, y))                       # Draws a point. Truncates floats into ints.
<ImageDraw>.line((x1, y1, x2, y2 [, ...]))      # To get anti-aliasing use Image's resize().
<ImageDraw>.arc((x1, y1, x2, y2), deg1, deg2)   # Always draws in clockwise direction.
<ImageDraw>.rectangle((x1, y1, x2, y2))         # To rotate use Image's rotate() and paste().
<ImageDraw>.polygon((x1, y1, x2, y2, ...))      # Last point gets connected to the first.
<ImageDraw>.ellipse((x1, y1, x2, y2))           # To rotate use Image's rotate() and paste().
<ImageDraw>.text((x, y), text, font=<Font>)     # `<Font> = ImageFont.truetype(<path>, size)`

#Animation

Creates a GIF of a bouncing ball:

# $ pip3 install imageio
from PIL import Image, ImageDraw
import imageio

WIDTH, HEIGHT, R = 126, 126, 10
frames = []
for velocity in range(1, 16):
    y = sum(range(velocity))
    frame = Image.new('L', (WIDTH, HEIGHT))
    draw  = ImageDraw.Draw(frame)
    draw.ellipse((WIDTH/2-R, y, WIDTH/2+R, y+R*2), fill='white')
    frames.append(frame)
frames += reversed(frames[1:-1])
imageio.mimsave('test.gif', frames, duration=0.03)

#Audio

import wave
<Wave_read>  = wave.open('<path>', 'rb')        # Opens the WAV file.
framerate    = <Wave_read>.getframerate()       # Number of frames per second.
nchannels    = <Wave_read>.getnchannels()       # Number of samples per frame.
sampwidth    = <Wave_read>.getsampwidth()       # Sample size in bytes.
nframes      = <Wave_read>.getnframes()         # Number of frames.
<params>     = <Wave_read>.getparams()          # Immutable collection of above.
<bytes>      = <Wave_read>.readframes(nframes)  # Returns next 'nframes' frames.
<Wave_write> = wave.open('<path>', 'wb')        # Truncates existing file.
<Wave_write>.setframerate(<int>)                # 44100 for CD, 48000 for video.
<Wave_write>.setnchannels(<int>)                # 1 for mono, 2 for stereo.
<Wave_write>.setsampwidth(<int>)                # 2 for CD quality sound.
<Wave_write>.setparams(<params>)                # Sets all parameters.
<Wave_write>.writeframes(<bytes>)               # Appends frames to the file.

Sample Values

┏━━━━━━━━━━━┯━━━━━━━━━━━┯━━━━━━┯━━━━━━━━━━━┓
┃ sampwidth │    min    │ zero │    max    ┃
┠───────────┼───────────┼──────┼───────────┨
┃     10128255 ┃
┃     2-32768032767 ┃
┃     3-838860808388607 ┃
┗━━━━━━━━━━━┷━━━━━━━━━━━┷━━━━━━┷━━━━━━━━━━━┛

Read Float Samples from WAV File

def read_wav_file(filename):
    def get_int(bytes_obj):
        an_int = int.from_bytes(bytes_obj, 'little', signed=(sampwidth != 1))
        return an_int - 128 * (sampwidth == 1)
    with wave.open(filename, 'rb') as file:
        sampwidth = file.getsampwidth()
        frames = file.readframes(-1)
    bytes_samples = (frames[i : i+sampwidth] for i in range(0, len(frames), sampwidth))
    return [get_int(b) / pow(2, sampwidth * 8 - 1) for b in bytes_samples]

Write Float Samples to WAV File

def write_to_wav_file(filename, float_samples, nchannels=1, sampwidth=2, framerate=44100):
    def get_bytes(a_float):
        a_float = max(-1, min(1 - 2e-16, a_float))
        a_float += sampwidth == 1
        a_float *= pow(2, sampwidth * 8 - 1)
        return int(a_float).to_bytes(sampwidth, 'little', signed=(sampwidth != 1))
    with wave.open(filename, 'wb') as file:
        file.setnchannels(nchannels)
        file.setsampwidth(sampwidth)
        file.setframerate(framerate)
        file.writeframes(b''.join(get_bytes(f) for f in float_samples))

Examples

Saves a 440 Hz sine wave to a mono WAV file:

from math import pi, sin
samples_f = (sin(i * 2 * pi * 440 / 44100) for i in range(100_000))
write_to_wav_file('test.wav', samples_f)

Adds noise to a mono WAV file:

from random import random
add_noise = lambda value: value + (random() - 0.5) * 0.03
samples_f = (add_noise(f) for f in read_wav_file('test.wav'))
write_to_wav_file('test.wav', samples_f)

Plays a WAV file:

# $ pip3 install simpleaudio
from simpleaudio import play_buffer
with wave.open('test.wav', 'rb') as file:
    p = file.getparams()
    frames = file.readframes(-1)
    play_buffer(frames, p.nchannels, p.sampwidth, p.framerate)

Text to Speech

# $ pip3 install pyttsx3
import pyttsx3
engine = pyttsx3.init()
engine.say('Sally sells seashells by the seashore.')
engine.runAndWait()

#Synthesizer

Plays Popcorn by Gershon Kingsley:

# $ pip3 install simpleaudio
import array, itertools as it, math, simpleaudio

F  = 44100
P1 = '71♩,69♪,,71♩,66♪,,62♩,66♪,,59♩,,'
P2 = '71♩,73♪,,74♩,73♪,,74♪,,71♪,,73♩,71♪,,73♪,,69♪,,71♩,69♪,,71♪,,67♪,,71♩,,'
get_pause   = lambda seconds: it.repeat(0, int(seconds * F))
sin_f       = lambda i, hz: math.sin(i * 2 * math.pi * hz / F)
get_wave    = lambda hz, seconds: (sin_f(i, hz) for i in range(int(seconds * F)))
get_hz      = lambda key: 8.176 * 2 ** (int(key) / 12)
parse_note  = lambda note: (get_hz(note[:2]), 1/4 if '♩' in note else 1/8)
get_samples = lambda note: get_wave(*parse_note(note)) if note else get_pause(1/8)
samples_f   = it.chain.from_iterable(get_samples(n) for n in f'{P1},{P1},{P2}'.split(','))
samples_i   = array.array('h', (int(f * 30000) for f in samples_f))
simpleaudio.play_buffer(samples_i, 1, 2, F)

#Pygame

# $ pip3 install pygame
import pygame as pg

pg.init()
screen = pg.display.set_mode((500, 500))
rect = pg.Rect(240, 240, 20, 20)
while not pg.event.get(pg.QUIT):
    deltas = {pg.K_UP: (0, -20), pg.K_RIGHT: (20, 0), pg.K_DOWN: (0, 20), pg.K_LEFT: (-20, 0)}
    for event in pg.event.get(pg.KEYDOWN):
        dx, dy = deltas.get(event.key, (0, 0))
        rect.move_ip((dx, dy))
    screen.fill((0, 0, 0))
    pg.draw.rect(screen, (255, 255, 255), rect)
    pg.display.flip()

Rectangle

Object for storing rectangular coordinates.

<Rect> = pg.Rect(x, y, width, height)           # Floats get truncated into ints.
<int>  = <Rect>.x/y/centerx/centery/…           # Top, right, bottom, left. Allows assignments.
<tup.> = <Rect>.topleft/center/…                # Topright, bottomright, bottomleft. Same.
<Rect> = <Rect>.move((delta_x, delta_y))        # Use move_ip() to move in-place.
<bool> = <Rect>.collidepoint((x, y))            # Checks if rectangle contains the point.
<bool> = <Rect>.colliderect(<Rect>)             # Checks if two rectangles overlap.
<int>  = <Rect>.collidelist(<list_of_Rect>)     # Returns index of first colliding Rect or -1.
<list> = <Rect>.collidelistall(<list_of_Rect>)  # Returns indexes of all colliding rectangles.

Surface

Object for representing images.

<Surf> = pg.display.set_mode((width, height))   # Opens new window and returns its surface.
<Surf> = pg.Surface((width, height))            # New RGB surface. RGBA if `flags=pg.SRCALPHA`.
<Surf> = pg.image.load(<path/file>)             # Loads the image. Format depends on source.
<Surf> = pg.surfarray.make_surface(<np_array>)  # Also `<array> = surfarray.pixels3d(<Surf>)`.
<Surf> = <Surf>.subsurface(<Rect>)              # Returns a subsurface.
<Surf>.fill(color)                              # Tuple, Color('#rrggbb[aa]') or Color(<name>).
<Surf>.set_at((x, y), color)                    # Updates pixel.
<Surf>.blit(<Surf>, (x, y))                     # Draws passed surface to the surface.
from pygame.transform import scale, ...
<Surf> = scale(<Surf>, (width, height))         # Returns scaled surface.
<Surf> = rotate(<Surf>, anticlock_degrees)      # Returns rotated and scaled surface.
<Surf> = flip(<Surf>, x_bool, y_bool)           # Returns flipped surface.
from pygame.draw import line, ...
line(<Surf>, color, (x1, y1), (x2, y2), width)  # Draws a line to the surface.
arc(<Surf>, color, <Rect>, from_rad, to_rad)    # Also ellipse(<Surf>, color, <Rect>, width=0).
rect(<Surf>, color, <Rect>, width=0)            # Also polygon(<Surf>, color, points, width=0).

Font

<Font> = pg.font.Font(<path/file>, size)        # Loads TTF file. Pass None for default font.
<Surf> = <Font>.render(text, antialias, color)  # Background color can be specified at the end.

Sound

<Sound> = pg.mixer.Sound(<path/file/bytes>)     # Loads WAV file or array of signed shorts.
<Sound>.play/stop()                             # Also <Sound>.set_volume(<float>).

Basic Mario Brothers Example

import collections, dataclasses, enum, io, itertools as it, pygame as pg, urllib.request
from random import randint

P = collections.namedtuple('P', 'x y')          # Position
D = enum.Enum('D', 'n e s w')                   # Direction
W, H, MAX_S = 50, 50, P(5, 10)                  # Width, Height, Max speed

def main():
    def get_screen():
        pg.init()
        return pg.display.set_mode((W*16, H*16))
    def get_images():
        url = 'https://gto76.github.io/python-cheatsheet/web/mario_bros.png'
        img = pg.image.load(io.BytesIO(urllib.request.urlopen(url).read()))
        return [img.subsurface(get_rect(x, 0)) for x in range(img.get_width() // 16)]
    def get_mario():
        Mario = dataclasses.make_dataclass('Mario', 'rect spd facing_left frame_cycle'.split())
        return Mario(get_rect(1, 1), P(0, 0), False, it.cycle(range(3)))
    def get_tiles():
        border = [(x, y) for x in range(W) for y in range(H) if x in [0, W-1] or y in [0, H-1]]
        platforms = [(randint(1, W-2), randint(2, H-2)) for _ in range(W*H // 10)]
        return [get_rect(x, y) for x, y in border + platforms]
    def get_rect(x, y):
        return pg.Rect(x*16, y*16, 16, 16)
    run(get_screen(), get_images(), get_mario(), get_tiles())

def run(screen, images, mario, tiles):
    clock = pg.time.Clock()
    pressed = set()
    while not pg.event.get(pg.QUIT) and clock.tick(28):
        keys = {pg.K_UP: D.n, pg.K_RIGHT: D.e, pg.K_DOWN: D.s, pg.K_LEFT: D.w}
        pressed |= {keys.get(e.key) for e in pg.event.get(pg.KEYDOWN)}
        pressed -= {keys.get(e.key) for e in pg.event.get(pg.KEYUP)}
        update_speed(mario, tiles, pressed)
        update_position(mario, tiles)
        draw(screen, images, mario, tiles, pressed)

def update_speed(mario, tiles, pressed):
    x, y = mario.spd
    x += 2 * ((D.e in pressed) - (D.w in pressed))
    x += (x < 0) - (x > 0)
    y += 1 if D.s not in get_boundaries(mario.rect, tiles) else (D.n in pressed) * -10
    mario.spd = P(x=max(-MAX_S.x, min(MAX_S.x, x)), y=max(-MAX_S.y, min(MAX_S.y, y)))

def update_position(mario, tiles):
    x, y = mario.rect.topleft
    n_steps = max(abs(s) for s in mario.spd)
    for _ in range(n_steps):
        mario.spd = stop_on_collision(mario.spd, get_boundaries(mario.rect, tiles))
        mario.rect.topleft = x, y = x + (mario.spd.x / n_steps), y + (mario.spd.y / n_steps)

def get_boundaries(rect, tiles):
    deltas = {D.n: P(0, -1), D.e: P(1, 0), D.s: P(0, 1), D.w: P(-1, 0)}
    return {d for d, delta in deltas.items() if rect.move(delta).collidelist(tiles) != -1}

def stop_on_collision(spd, bounds):
    return P(x=0 if (D.w in bounds and spd.x < 0) or (D.e in bounds and spd.x > 0) else spd.x,
             y=0 if (D.n in bounds and spd.y < 0) or (D.s in bounds and spd.y > 0) else spd.y)

def draw(screen, images, mario, tiles, pressed):
    def get_marios_image_index():
        if D.s not in get_boundaries(mario.rect, tiles):
            return 4
        return next(mario.frame_cycle) if {D.w, D.e} & pressed else 6
    screen.fill((85, 168, 255))
    mario.facing_left = (D.w in pressed) if {D.w, D.e} & pressed else mario.facing_left
    screen.blit(images[get_marios_image_index() + mario.facing_left * 9], mario.rect)
    for t in tiles:
        screen.blit(images[18 if t.x in [0, (W-1)*16] or t.y in [0, (H-1)*16] else 19], t)
    pg.display.flip()

if __name__ == '__main__':
    main()

#Pandas

# $ pip3 install pandas matplotlib
import pandas as pd, matplotlib.pyplot as plt

Series

Ordered dictionary with a name.

>>> pd.Series([1, 2], index=['x', 'y'], name='a')
x    1
y    2
Name: a, dtype: int64
<Sr> = pd.Series(<list>)                       # Assigns RangeIndex starting at 0.
<Sr> = pd.Series(<dict>)                       # Takes dictionary's keys for index.
<Sr> = pd.Series(<dict/Series>, index=<list>)  # Only keeps items with keys specified in index.
<el> = <Sr>.loc[key]                           # Or: <Sr>.iloc[index]
<Sr> = <Sr>.loc[keys]                          # Or: <Sr>.iloc[indexes]
<Sr> = <Sr>.loc[from_key : to_key_inclusive]   # Or: <Sr>.iloc[from_i : to_i_exclusive]
<el> = <Sr>[key/index]                         # Or: <Sr>.key
<Sr> = <Sr>[keys/indexes]                      # Or: <Sr>[<keys_slice/slice>]
<Sr> = <Sr>[bools]                             # Or: <Sr>.i/loc[bools]
<Sr> = <Sr> ><== <el/Sr>                       # Returns a Series of bools.
<Sr> = <Sr> +-*/ <el/Sr>                       # Items with non-matching keys get value NaN.
<Sr> = pd.concat(<coll_of_Sr>)                 # Concats multiple Series into one long Series.
<Sr> = <Sr>.combine_first(<Sr>)                # Adds items that are not yet present.
<Sr>.update(<Sr>)                              # Updates items that are already present.
<Sr>.plot.line/area/bar/pie/hist()             # Generates a Matplotlib plot.
plt.show()                                     # Displays the plot. Also plt.savefig(<path>).

Series — Aggregate, Transform, Map:

<el> = <Sr>.sum/max/mean/idxmax/all()          # Or: <Sr>.agg(lambda <Sr>: <el>)
<Sr> = <Sr>.rank/diff/cumsum/ffill/interpl()   # Or: <Sr>.agg/transform(lambda <Sr>: <Sr>)
<Sr> = <Sr>.fillna(<el>)                       # Or: <Sr>.agg/transform/map(lambda <el>: <el>)
>>> sr = pd.Series([1, 2], index=['x', 'y'])
x    1
y    2
┏━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┓
┃               │    'sum'    │   ['sum']   │ {'s': 'sum'}  ┃
┠───────────────┼─────────────┼─────────────┼───────────────┨
┃ sr.apply(…)   │      3      │    sum  3   │     s  3      ┃
┃ sr.agg(…)     │             │             │               ┃
┗━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┛

┏━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┓
┃               │    'rank'   │   ['rank']  │ {'r': 'rank'} ┃
┠───────────────┼─────────────┼─────────────┼───────────────┨
┃ sr.apply(…)   │             │      rank   │               ┃
┃ sr.agg(…)     │     x  1    │   x     1   │    r  x  1    ┃
┃               │     y  2    │   y     2   │       y  2    ┃
┗━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┛

DataFrame

Table with labeled rows and columns.

>>> pd.DataFrame([[1, 2], [3, 4]], index=['a', 'b'], columns=['x', 'y'])
   x  y
a  1  2
b  3  4
<DF>    = pd.DataFrame(<list_of_rows>)         # Rows can be either lists, dicts or series.
<DF>    = pd.DataFrame(<dict_of_columns>)      # Columns can be either lists, dicts or series.
<el>    = <DF>.loc[row_key, column_key]        # Or: <DF>.iloc[row_index, column_index]
<Sr/DF> = <DF>.loc[row_key/s]                  # Or: <DF>.iloc[row_index/es]
<Sr/DF> = <DF>.loc[:, column_key/s]            # Or: <DF>.iloc[:, column_index/es]
<DF>    = <DF>.loc[row_bools, column_bools]    # Or: <DF>.iloc[row_bools, column_bools]
<Sr/DF> = <DF>[column_key/s]                   # Or: <DF>.column_key
<DF>    = <DF>[row_bools]                      # Keeps rows as specified by bools.
<DF>    = <DF>[<DF_of_bools>]                  # Assigns NaN to False values.
<DF>    = <DF> ><== <el/Sr/DF>                 # Returns DF of bools. Sr is treated as a row.
<DF>    = <DF> +-*/ <el/Sr/DF>                 # Items with non-matching keys get value NaN.
<DF>    = <DF>.set_index(column_key)           # Replaces row keys with values from a column.
<DF>    = <DF>.reset_index(drop=False)         # Drops or moves row keys to column named index.
<DF>    = <DF>.sort_index(ascending=True)      # Sorts rows by row keys. Use `axis=1` for cols.
<DF>    = <DF>.sort_values(column_key/s)       # Sorts rows by the passed column/s. Same.

DataFrame — Merge, Join, Concat:

>>> l = pd.DataFrame([[1, 2], [3, 4]], index=['a', 'b'], columns=['x', 'y'])
   x  y
a  1  2
b  3  4
>>> r = pd.DataFrame([[4, 5], [6, 7]], index=['b', 'c'], columns=['y', 'z'])
   y  z
b  4  5
c  6  7
┏━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃                        │    'outer''inner''left'   │       Description        ┃
┠────────────────────────┼───────────────┼────────────┼────────────┼──────────────────────────┨
┃ l.merge(r, on='y',     │    x   y   z  │ x   y   z  │ x   y   z  │ Merges on column if 'on' ┃
┃            how=…)      │ 0  1   2   .  │ 3   4   51   2   .  │ or 'left/right_on' are   ┃
┃                        │ 1  3   4   5  │            │ 3   4   5  │ set, else on shared cols.┃
┃                        │ 2  .   6   7  │            │            │ Uses 'inner' by default. ┃
┠────────────────────────┼───────────────┼────────────┼────────────┼──────────────────────────┨
┃ l.join(r, lsuffix='l', │    x yl yr  z │            │ x yl yr  z │ Merges on row keys.      ┃
┃           rsuffix='r', │ a  1  2  .  . │ x yl yr  z │ 1  2  .  . │ Uses 'left' by default.  ┃
┃           how=…)       │ b  3  4  4  53  4  4  53  4  4  5 │ If r is a Series, it is  ┃
┃                        │ c  .  .  6  7 │            │            │ treated as a column.     ┃
┠────────────────────────┼───────────────┼────────────┼────────────┼──────────────────────────┨
┃ pd.concat([l, r],      │    x   y   z  │     y      │            │ Adds rows at the bottom. ┃
┃           axis=0,      │ a  1   2   .  │     2      │            │ Uses 'outer' by default. ┃
┃           join=…)      │ b  3   4   .  │     4      │            │ A Series is treated as a ┃
┃                        │ b  .   4   54      │            │ column. To add a row use ┃
┃                        │ c  .   6   76      │            │ pd.concat([l, DF([sr])]).┃
┠────────────────────────┼───────────────┼────────────┼────────────┼──────────────────────────┨
┃ pd.concat([l, r],      │    x  y  y  z │            │            │ Adds columns at the      ┃
┃           axis=1,      │ a  1  2  .  . │ x  y  y  z │            │ right end. Uses 'outer'  ┃
┃           join=…)      │ b  3  4  4  53  4  4  5 │            │ by default. A Series is  ┃
┃                        │ c  .  .  6  7 │            │            │ treated as a column.     ┃
┠────────────────────────┼───────────────┼────────────┼────────────┼──────────────────────────┨
┃ l.combine_first(r)     │    x   y   z  │            │            │ Adds missing rows and    ┃
┃                        │ a  1   2   .  │            │            │ columns. Also updates    ┃
┃                        │ b  3   4   5  │            │            │ items that contain NaN.  ┃
┃                        │ c  .   6   7  │            │            │ R must be a DataFrame.   ┃
┗━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━┛

DataFrame — Aggregate, Transform, Map:

<Sr> = <DF>.sum/max/mean/idxmax/all()          # Or: <DF>.apply/agg(lambda <Sr>: <el>)
<DF> = <DF>.rank/diff/cumsum/ffill/interpl()   # Or: <DF>.apply/agg/transfrm(lambda <Sr>: <Sr>)
<DF> = <DF>.fillna(<el>)                       # Or: <DF>.applymap(lambda <el>: <el>)
>>> df = pd.DataFrame([[1, 2], [3, 4]], index=['a', 'b'], columns=['x', 'y'])
   x  y
a  1  2
b  3  4
┏━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┓
┃                 │    'sum'    │   ['sum']   │ {'x': 'sum'}  ┃
┠─────────────────┼─────────────┼─────────────┼───────────────┨
┃ df.apply(…)     │             │       x  y  │               ┃
┃ df.agg(…)       │     x  4    │  sum  4  6  │     x  4      ┃
┃                 │     y  6    │             │               ┃
┗━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┛

┏━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┓
┃                 │    'rank'   │   ['rank']  │ {'x': 'rank'} ┃
┠─────────────────┼─────────────┼─────────────┼───────────────┨
┃ df.apply(…)     │      x  y   │      x    y │        x      ┃
┃ df.agg(…)       │   a  1  1   │   rank rank │     a  1      ┃
┃ df.transform(…) │   b  2  2   │ a    1    1 │     b  2      ┃
┃                 │             │ b    2    2 │               ┃
┗━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┛

DataFrame — Plot, Encode, Decode:

<DF>.plot.line/area/bar/hist/scatter/box()     # Also: `x=column_key, y=column_key/s`.
plt.show()                                     # Displays the plot. Also plt.savefig(<path>).
<DF> = pd.read_json/html('<str/path/url>')     # Run `$ pip3 install beautifulsoup4 lxml`.
<DF> = pd.read_csv/pickle/excel('<path/url>')  # Use `sheet_name=None` to get all Excel sheets.
<DF> = pd.read_sql('<table/query>', <conn.>)   # Accepts SQLite3 or SQLAlchemy connection.
<DF> = pd.read_clipboard()                     # Reads a copied table from the clipboard.
<dict> = <DF>.to_dict(['d/l/s/…'])             # Returns columns as dicts, lists or series.
<str>  = <DF>.to_json/html/csv([<path>])       # Also to_markdown/latex([<path>]).
<DF>.to_pickle/excel(<path>)                   # Run `$ pip3 install openpyxl` for xlsx files.
<DF>.to_sql('<table_name>', <connection>)      # Accepts SQLite3 or SQLAlchemy connection.

GroupBy

Object that groups together rows of a dataframe based on the value of the passed column.

>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 6]], list('abc'), list('xyz'))
>>> df.groupby('z').get_group(6)
   x  y  z
b  4  5  6
c  7  8  6
<GB> = <DF>.groupby(column_key/s)              # Splits DF into groups based on passed column.
<DF> = <GB>.apply(<func>)                      # Maps each group. Func can return DF, Sr or el.
<GB> = <GB>[column_key]                        # Single column GB. All operations return a Sr.

GroupBy — Aggregate, Transform, Map:

<DF> = <GB>.sum/max/mean/idxmax/all()          # Or: <GB>.agg(lambda <Sr>: <el>)
<DF> = <GB>.rank/diff/cumsum/ffill()           # Or: <GB>.transform(lambda <Sr>: <Sr>)
<DF> = <GB>.fillna(<el>)                       # Or: <GB>.transform(lambda <Sr>: <Sr>)
>>> gb = df.groupby('z')
      x  y  z
3: a  1  2  3
6: b  4  5  6
   c  7  8  6
┏━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┓
┃                 │    'sum''rank'   │   ['rank']  │ {'x': 'rank'} ┃
┠─────────────────┼─────────────┼─────────────┼─────────────┼───────────────┨
┃ gb.agg(…)       │      x   y  │      x  y   │      x    y │        x      ┃
┃                 │  z          │   a  1  1   │   rank rank │     a  1      ┃
┃                 │  3   1   2  │   b  1  1   │ a    1    1 │     b  1      ┃
┃                 │  6  11  13  │   c  2  2   │ b    1    1 │     c  2      ┃
┃                 │             │             │ c    2    2 │               ┃
┠─────────────────┼─────────────┼─────────────┼─────────────┼───────────────┨
┃ gb.transform(…) │      x   y  │      x  y   │             │               ┃
┃                 │  a   1   2  │   a  1  1   │             │               ┃
┃                 │  b  11  13  │   b  1  1   │             │               ┃
┃                 │  c  11  13  │   c  2  2   │             │               ┃
┗━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┛

Rolling

Object for rolling window calculations.

<RSr/RDF/RGB> = <Sr/DF/GB>.rolling(win_size)   # Also: `min_periods=None, center=False`.
<RSr/RDF/RGB> = <RDF/RGB>[column_key/s]        # Or: <RDF/RGB>.column_key
<Sr/DF>       = <R>.mean/sum/max()             # Or: <R>.apply/agg(<agg_func/str>)

#Plotly

# $ pip3 install plotly kaleido
from plotly.express import line
<Figure> = line(<DF>, x=<col_name>, y=<col_name>)           # Or: line(x=<list>, y=<list>)
<Figure>.update_layout(margin=dict(t=0, r=0, b=0, l=0), …)  # `paper_bgcolor='rgb(0, 0, 0)'`.
<Figure>.write_html/json/image('<path>')                    # Also <Figure>.show().

Displays a line chart of total coronavirus deaths per million grouped by continent:

covid = pd.read_csv('https://covid.ourworldindata.org/data/owid-covid-data.csv',
                    usecols=['iso_code', 'date', 'total_deaths', 'population'])
continents = pd.read_csv('https://gist.githubusercontent.com/stevewithington/20a69c0b6d2ff'
                         '846ea5d35e5fc47f26c/raw/country-and-continent-codes-list-csv.csv',
                         usecols=['Three_Letter_Country_Code', 'Continent_Name'])
df = pd.merge(covid, continents, left_on='iso_code', right_on='Three_Letter_Country_Code')
df = df.groupby(['Continent_Name', 'date']).sum().reset_index()
df['Total Deaths per Million'] = df.total_deaths * 1e6 / df.population
df = df[df.date > '2020-03-14']
df = df.rename({'date': 'Date', 'Continent_Name': 'Continent'}, axis='columns')
line(df, x='Date', y='Total Deaths per Million', color='Continent').show()

Displays a multi-axis line chart of total coronavirus cases and changes in prices of Bitcoin, Dow Jones and gold:

import pandas as pd, plotly.graph_objects as go

def main():
    display_data(wrangle_data(*scrape_data()))

def scrape_data():
    def scrape_covid():
        url = 'https://covid.ourworldindata.org/data/owid-covid-data.csv'
        df = pd.read_csv(url, usecols=['location', 'date', 'total_cases'])
        return df[df.location == 'World'].set_index('date').total_cases
    def scrape_yahoo(slug):
        url = (f'https://query1.finance.yahoo.com/v7/finance/download/{slug}?'
               'period1=1579651200&period2=9999999999&interval=1d&events=history')
        df = pd.read_csv(url, usecols=['Date', 'Close'])
        return df.set_index('Date').Close
    out = scrape_covid(), scrape_yahoo('BTC-USD'), scrape_yahoo('GC=F'), scrape_yahoo('^DJI')
    return map(pd.Series.rename, out, ['Total Cases', 'Bitcoin', 'Gold', 'Dow Jones'])

def wrangle_data(covid, bitcoin, gold, dow):
    df = pd.concat([bitcoin, gold, dow], axis=1)  # Joins columns on dates.
    df = df.sort_index().interpolate()            # Sorts by date and interpolates NaN-s.
    df = df.loc['2020-02-23':]                    # Discards rows before '2020-02-23'.
    df = (df / df.iloc[0]) * 100                  # Calculates percentages relative to day 1.
    df = df.join(covid)                           # Adds column with covid cases.
    return df.sort_values(df.index[-1], axis=1)   # Sorts columns by last day's value.

def display_data(df):
    figure = go.Figure()
    for col_name in reversed(df.columns):
        yaxis = 'y1' if col_name == 'Total Cases' else 'y2'
        trace = go.Scatter(x=df.index, y=df[col_name], name=col_name, yaxis=yaxis)
        figure.add_trace(trace)
    figure.update_layout(
        yaxis1=dict(title='Total Cases', rangemode='tozero'),
        yaxis2=dict(title='%', rangemode='tozero', overlaying='y', side='right'),
        legend=dict(x=1.1),
        height=450
    )
    figure.show()

if __name__ == '__main__':
    main()

#PySimpleGUI

# $ pip3 install PySimpleGUI
import PySimpleGUI as sg

layout = [[sg.Text("What's your name?")], [sg.Input()], [sg.Button('Ok')]]
window = sg.Window('Window Title', layout)
event, values = window.read()
print(f'Hello {values[0]}!' if event == 'Ok' else '')

#Appendix

Cython

Library that compiles Python code into C.

# $ pip3 install cython
import pyximport; pyximport.install()
import <cython_script>
<cython_script>.main()

Definitions:

cdef <ctype> <var_name> = <el>
cdef <ctype>[n_elements] <var_name> = [<el_1>, <el_2>, ...]
cdef <ctype/void> <func_name>(<ctype> <arg_name>): ...
cdef class <class_name>:
    cdef public <ctype> <attr_name>
    def __init__(self, <ctype> <arg_name>):
        self.<attr_name> = <arg_name>
cdef enum <enum_name>: <member_name_1>, <member_name_2>, ...

PyInstaller

$ pip3 install pyinstaller
$ pyinstaller script.py                        # Compiles into './dist/script' directory.
$ pyinstaller script.py --onefile              # Compiles into './dist/script' console app.
$ pyinstaller script.py --windowed             # Compiles into './dist/script' windowed app.
$ pyinstaller script.py --add-data '<path>:.'  # Adds file to the root of the executable.

Basic Script Template

#!/usr/bin/env python3
#
# Usage: .py
#

from sys import argv, exit
from collections import defaultdict, namedtuple
from dataclasses import make_dataclass
from enum import Enum
import functools as ft, itertools as it, operator as op, re


def main():
    pass


###
##  UTIL
#

def read_file(filename):
    with open(filename, encoding='utf-8') as file:
        return file.readlines()


if __name__ == '__main__':
    main()

#Index