* **Indexing objects can't be tuples because `'obj[x, y]'` is converted to `'obj[(x, y)]'`.**
* **Indexing objects can't be tuples because `'obj[x, y]'` is converted to `'obj[(x, y)]'`.**
* **Pandas uses NumPy types like `'np.int64'`. Series is converted to `'float64'` if we assign np.nan to any item. Use `'<S>.astype(<str/type>)'` to get converted Series.**
* **Pandas uses NumPy types like `'np.int64'`. Series is converted to `'float64'` if we assign np.nan to any item. Use `'<S>.astype(<str/type>)'` to get converted Series.**
* **Series will silently overflow if we run `'pd.Series([100], dtype="int8") + 100'`!**
* **Series will silently overflow if we run `'pd.Series([100], dtype="int8") + 100'`!**
<li><strong>Indexing objects can't be tuples because <codeclass="python hljs"><spanclass="hljs-string">'obj[x, y]'</span></code> is converted to <codeclass="python hljs"><spanclass="hljs-string">'obj[(x, y)]'</span></code>.</strong></li>
<li><strong>Indexing objects can't be tuples because <codeclass="python hljs"><spanclass="hljs-string">'obj[x, y]'</span></code> is converted to <codeclass="python hljs"><spanclass="hljs-string">'obj[(x, y)]'</span></code>.</strong></li>
<li><strong>Pandas uses NumPy types like <codeclass="python hljs"><spanclass="hljs-string">'np.int64'</span></code>. Series is converted to <codeclass="python hljs"><spanclass="hljs-string">'float64'</span></code> if we assign np.nan to any item. Use <codeclass="python hljs"><spanclass="hljs-string">'<S>.astype(<str/type>)'</span></code> to get converted Series.</strong></li>
<li><strong>Pandas uses NumPy types like <codeclass="python hljs"><spanclass="hljs-string">'np.int64'</span></code>. Series is converted to <codeclass="python hljs"><spanclass="hljs-string">'float64'</span></code> if we assign np.nan to any item. Use <codeclass="python hljs"><spanclass="hljs-string">'<S>.astype(<str/type>)'</span></code> to get converted Series.</strong></li>
<li><strong>Series will silently overflow if we run <codeclass="python hljs"><spanclass="hljs-string">'pd.Series([100], dtype="int8") + 100'</span></code>!</strong></li>
<li><strong>Series will silently overflow if we run <codeclass="python hljs"><spanclass="hljs-string">'pd.Series([100], dtype="int8") + 100'</span></code>!</strong></li>