<pre><codeclass="python language-python hljs"><Sr> = <Sr>><== <el/Sr><spanclass="hljs-comment"># Returns a Series of bools.</span>
<Sr> = <Sr> +-*/ <el/Sr><spanclass="hljs-comment"># Items with non-matching keys get value NaN.</span>
<pre><codeclass="python language-python hljs"><Sr> = pd.concat(<coll_of_Sr>)<spanclass="hljs-comment"># Concats multiple Series into one long Series.</span>
<Sr> = <Sr>.combine_first(<Sr>) <spanclass="hljs-comment"># Adds items that are not yet present.</span>
<Sr>.update(<Sr>) <spanclass="hljs-comment"># Updates items that are already present.</span>
</code></pre>
@ -2611,6 +2611,7 @@ y <span class="hljs-number">2</span>
</code></pre>
<ul>
<li><strong>Methods ffill(), interpolate() and fillna() accept argument 'inplace' that defaults to False.</strong></li>
<li><strong>Last result has a hierarchical index. Use <codeclass="python hljs"><spanclass="hljs-string">'<Sr>[key_1, key_2]'</span></code> to get its values.</strong></li>
</ul>
<div><h3id="dataframe">DataFrame</h3><p><strong>Table with labeled rows and columns.</strong></p><pre><codeclass="python language-python hljs"><spanclass="hljs-meta">>>></span>DataFrame([[<spanclass="hljs-number">1</span>, <spanclass="hljs-number">2</span>], [<spanclass="hljs-number">3</span>, <spanclass="hljs-number">4</span>]], index=[<spanclass="hljs-string">'a'</span>, <spanclass="hljs-string">'b'</span>], columns=[<spanclass="hljs-string">'x'</span>, <spanclass="hljs-string">'y'</span>])
@ -2636,9 +2637,9 @@ b <span class="hljs-number">3</span> <span class="hljs-number">4</span>
<DF> = <DF> +-*/ <el/Sr/DF><spanclass="hljs-comment"># Items with non-matching keys get value NaN.</span>
</code></pre>
<pre><codeclass="python language-python hljs"><DF> = <DF>.set_index(column_key) <spanclass="hljs-comment"># Replaces row keys with values from a column.</span>
<DF> = <DF>.reset_index() <spanclass="hljs-comment"># Moves row keys to a column named index.</span>
<DF> = <DF>.sort_index(ascending=<spanclass="hljs-keyword">True</span>) <spanclass="hljs-comment"># Sorts rows by row keys.</span>
<DF> = <DF>.sort_values(column_key/s) <spanclass="hljs-comment"># Sorts rows by the passed column/s.</span>
<DF> = <DF>.reset_index(drop=<spanclass="hljs-keyword">False</span>)<spanclass="hljs-comment"># Moves row keys to a column named index.</span>
<DF> = <DF>.sort_index(ascending=<spanclass="hljs-keyword">True</span>) <spanclass="hljs-comment"># Sorts rows by row keys. Use `axis=1` for cols.</span>
<DF> = <DF>.sort_values(column_key/s) <spanclass="hljs-comment"># Sorts rows by the passed column/s. Same.</span>
@ -2714,7 +2715,7 @@ b <span class="hljs-number">3</span> <span class="hljs-number">4</span>
<ul>
<li><strong>Use <codeclass="python hljs"><spanclass="hljs-string">'<DF>[col_key_1, col_key_2][row_key]'</span></code> to get the fifth result's values.</strong></li>