<li><strong>Indexes should not be tuples because Python converts <codeclass="python hljs"><spanclass="hljs-string">'obj[i, j]'</span></code> to <codeclass="python hljs"><spanclass="hljs-string">'obj[(i, j)]'</span></code>!</strong></li>
<li><strong><codeclass="python hljs"><spanclass="hljs-string">':'</span></code> returns a slice of all dimension's indexes. Omitted dimensions default to <codeclass="python hljs"><spanclass="hljs-string">':'</span></code>.</strong></li>
<li><strong>Any value that is broadcastable to the indexed shape can be assigned to the selection.</strong></li>
</ul>
<div><h3id="broadcasting">Broadcasting</h3><p><strong>Set of rules by which NumPy functions operate on arrays of different sizes and/or dimensions.</strong></p><pre><codeclass="python language-python hljs">left = [[<spanclass="hljs-number">0.1</span>], [<spanclass="hljs-number">0.6</span>], [<spanclass="hljs-number">0.8</span>]] <spanclass="hljs-comment"># Shape: (3, 1)</span>
@ -2232,9 +2233,7 @@ right = [[<span class="hljs-number">0.1</span>, <span class="hljs-number">0.6</
<DF> = pd.read_csv/pickle/excel(<spanclass="hljs-string">'<path/url>'</span>) <spanclass="hljs-comment"># Use `sheet_name=None` to get all Excel sheets.</span>
<DF> = pd.read_csv(<spanclass="hljs-string">'<path/url>'</span>) <spanclass="hljs-comment"># Also `names=<list>, parse_dates=False`.</span>
<DF> = pd.read_pickle/excel(<spanclass="hljs-string">'<path/url>'</span>) <spanclass="hljs-comment"># Use `sheet_name=None` to get all Excel sheets.</span>
<DF> = pd.read_sql(<spanclass="hljs-string">'<table/query>'</span>, <conn.>) <spanclass="hljs-comment"># SQLite3/SQLAlchemy connection (see #SQLite).</span>
<DF> = pd.read_clipboard() <spanclass="hljs-comment"># Reads a copied table from the clipboard.</span>
</code></pre>
<pre><codeclass="python language-python hljs"><dict> = <DF>.to_dict([<spanclass="hljs-string">'d/l/s/…'</span>]) <spanclass="hljs-comment"># Returns columns as dicts, lists or series.</span>
<str> = <DF>.to_json/html/csv([<path>]) <spanclass="hljs-comment"># Also to_markdown/latex([<path>]).</span>
@ -2747,6 +2746,7 @@ c <span class="hljs-number">7</span> <span class="hljs-number">8</span> <span
<pre><codeclass="python language-python hljs"><GB> = <DF>.groupby(column_key/s) <spanclass="hljs-comment"># Splits DF into groups based on passed column.</span>
<DF> = <GB>.apply(<func>) <spanclass="hljs-comment"># Maps each group. Func can return DF, Sr or el.</span>
<GB> = <GB>[column_key] <spanclass="hljs-comment"># Single column GB. All operations return a Sr.</span>
<Sr> = <GB>.size() <spanclass="hljs-comment"># A Sr of group sizes. Keys are group "names".</span>