Browse Source

Pandas

pull/86/head
Jure Šorn 4 years ago
parent
commit
c2bb568ec9
3 changed files with 7 additions and 7 deletions
  1. 6
      README.md
  2. 6
      index.html
  3. 2
      parse.js

6
README.md

@ -3180,9 +3180,9 @@ b 3 4
```python
<DF> = <DF>.set_index(column_key) # Replaces row keys with values from a column.
<DF> = <DF>.reset_index() # Moves row keys to column named index.
<DF> = <DF>.reset_index() # Moves row keys to a column named index.
<DF> = <DF>.filter('<regex>', axis=1) # Only keeps columns whose key matches the regex.
<DF> = <DF>.melt(id_vars=column_key/s) # Converts DF from wide to long format.
<DF> = <DF>.melt(id_vars=column_key/s) # Converts DataFrame from wide to long format.
```
#### Merge, Join, Concat:
@ -3224,7 +3224,7 @@ c 6 7
+------------------------+---------------+------------+------------+--------------------------+
| l.combine_first(r) | x y z | | | Adds missing rows and |
| | a 1 2 . | | | columns. Also updates |
| | b 3 4 5 | | | cells that contain NaN. |
| | b 3 4 5 | | | items that contain NaN. |
| | c . 6 7 | | | R must be a DataFrame. |
+------------------------+---------------+------------+------------+--------------------------+
```

6
index.html

@ -2721,9 +2721,9 @@ b <span class="hljs-number">3</span> <span class="hljs-number">4</span>
&lt;DF&gt; = &lt;DF&gt; +-*/ &lt;el/Sr/DF&gt; <span class="hljs-comment"># Items with non-matching keys get value NaN.</span>
</code></pre>
<pre><code class="python language-python hljs">&lt;DF&gt; = &lt;DF&gt;.set_index(column_key) <span class="hljs-comment"># Replaces row keys with values from a column.</span>
&lt;DF&gt; = &lt;DF&gt;.reset_index() <span class="hljs-comment"># Moves row keys to column named index.</span>
&lt;DF&gt; = &lt;DF&gt;.reset_index() <span class="hljs-comment"># Moves row keys to a column named index.</span>
&lt;DF&gt; = &lt;DF&gt;.filter(<span class="hljs-string">'&lt;regex&gt;'</span>, axis=<span class="hljs-number">1</span>) <span class="hljs-comment"># Only keeps columns whose key matches the regex.</span>
&lt;DF&gt; = &lt;DF&gt;.melt(id_vars=column_key/s) <span class="hljs-comment"># Converts DF from wide to long format.</span>
&lt;DF&gt; = &lt;DF&gt;.melt(id_vars=column_key/s) <span class="hljs-comment"># Converts DataFrame from wide to long format.</span>
</code></pre>
<div><h4 id="mergejoinconcat">Merge, Join, Concat:</h4><pre><code class="python language-python hljs"><span class="hljs-meta">&gt;&gt;&gt; </span>l = DataFrame([[<span class="hljs-number">1</span>, <span class="hljs-number">2</span>], [<span class="hljs-number">3</span>, <span class="hljs-number">4</span>]], index=[<span class="hljs-string">'a'</span>, <span class="hljs-string">'b'</span>], columns=[<span class="hljs-string">'x'</span>, <span class="hljs-string">'y'</span>])
x y
@ -2761,7 +2761,7 @@ c <span class="hljs-number">6</span> <span class="hljs-number">7</span>
┠────────────────────────┼───────────────┼────────────┼────────────┼──────────────────────────┨
┃ l.combine_first(r) │ x y z │ │ │ Adds missing rows and ┃
┃ │ a <span class="hljs-number">1</span> <span class="hljs-number">2</span> . │ │ │ columns. Also updates ┃
┃ │ b <span class="hljs-number">3</span> <span class="hljs-number">4</span> <span class="hljs-number">5</span> │ │ │ cells that contain NaN. ┃
┃ │ b <span class="hljs-number">3</span> <span class="hljs-number">4</span> <span class="hljs-number">5</span> │ │ │ items that contain NaN. ┃
┃ │ c . <span class="hljs-number">6</span> <span class="hljs-number">7</span> │ │ │ R must be a DataFrame. ┃
┗━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━┛
</code></pre>

2
parse.js

@ -362,7 +362,7 @@ const DIAGRAM_15_B =
"┠────────────────────────┼───────────────┼────────────┼────────────┼──────────────────────────┨\n" +
"┃ l.combine_first(r) │ x y z │ │ │ Adds missing rows and ┃\n" +
"┃ │ a 1 2 . │ │ │ columns. Also updates ┃\n" +
"┃ │ b 3 4 5 │ │ │ cells that contain NaN. ┃\n" +
"┃ │ b 3 4 5 │ │ │ items that contain NaN. ┃\n" +
"┃ │ c . 6 7 │ │ │ R must be a DataFrame. ┃\n" +
"┗━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━┛\n";

Loading…
Cancel
Save