@ -2599,14 +2599,14 @@ plt.show() <span class="hljs-comment"># Disp
< Sr> = < Sr> .fillna(< el> ) < span class = "hljs-comment" > # Or: < Sr> .agg/transform/map(lambda < el> : < el> )< / span >
< / code > < / pre > < / div >
< pre > < code class = "python language-python hljs" > < span class = "hljs-meta" > > > > < / span > sr = pd.Series([< span class = "hljs-number" > 1 < / span > , < span class = "hljs-number" > 2 < / span > ], index=[< span class = "hljs-string" > 'x'< / span > , < span class = "hljs-string" > 'y'< / span > ])
x < span class = "hljs-number" > 1 < / span >
y < span class = "hljs-number" > 2 < / span >
< pre > < code class = "python language-python hljs" > < span class = "hljs-meta" > > > > < / span > sr = pd.Series([< span class = "hljs-number" > 2 < / span > , < span class = "hljs-number" > 3 < / span > ], index=[< span class = "hljs-string" > 'x'< / span > , < span class = "hljs-string" > 'y'< / span > ])
x < span class = "hljs-number" > 2 < / span >
y < span class = "hljs-number" > 3 < / span >
< / code > < / pre >
< pre > < code class = "python hljs" > ┏━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┓
┃ │ < span class = "hljs-string" > 'sum'< / span > │ [< span class = "hljs-string" > 'sum'< / span > ] │ {< span class = "hljs-string" > 's'< / span > : < span class = "hljs-string" > 'sum'< / span > } ┃
┠───────────────┼─────────────┼─────────────┼───────────────┨
┃ sr.apply(…) │ < span class = "hljs-number" > 3 < / span > │ sum < span class = "hljs-number" > 3 < / span > │ s < span class = "hljs-number" > 3 < / span > ┃
┃ sr.apply(…) │ < span class = "hljs-number" > 5 < / span > │ sum < span class = "hljs-number" > 5 < / span > │ s < span class = "hljs-number" > 5 < / span > ┃
┃ sr.agg(…) │ │ │ ┃
┗━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┛
@ -2756,12 +2756,12 @@ c <span class="hljs-number">7</span> <span class="hljs-number">8</span> <span
< DF> = < GB> .fillna(< el> ) < span class = "hljs-comment" > # Or: < GB> .transform(lambda < Sr> : < Sr> )< / span >
< / code > < / pre > < / div >
< pre > < code class = "python language-python hljs" > < span class = "hljs-meta" > > > > < / span > gb = df.groupby(< span class = "hljs-string" > 'z'< / span > )
x y z
< span class = "hljs-number" > 3< / span > : a < span class = "hljs-number" > 1< / span > < span class = "hljs-number" > 2< / span > < span class = "hljs-number" > 3< / span >
< span class = "hljs-number" > 6< / span > : b < span class = "hljs-number" > 4< / span > < span class = "hljs-number" > 5< / span > < span class = "hljs-number" > 6< / span >
c < span class = "hljs-number" > 7 < / span > < span class = "hljs-number" > 8 < / span > < span class = "hljs-number" > 6< / span >
< / code > < / pre >
< pre > < code class = "python language-python hljs" > < span class = "hljs-meta" > > > > < / span > gb = df.groupby(< span class = "hljs-string" > 'z'< / span > ); gb.apply(print)
x y z
a < span class = "hljs-number" > 1< / span > < span class = "hljs-number" > 2< / span > < span class = "hljs-number" > 3< / span >
x y z
b < span class = "hljs-number" > 4 < / span > < span class = "hljs-number" > 5 < / span > < span class = "hljs-number" > 6< / span >
c < span class = "hljs-number" > 7< / span > < span class = "hljs-number" > 8< / span > < span class = "hljs-number" > 6< / span > < / code > < / pre >
< pre > < code class = "python hljs" > ┏━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┓
┃ │ < span class = "hljs-string" > 'sum'< / span > │ < span class = "hljs-string" > 'rank'< / span > │ [< span class = "hljs-string" > 'rank'< / span > ] │ {< span class = "hljs-string" > 'x'< / span > : < span class = "hljs-string" > 'rank'< / span > } ┃
┠─────────────────┼─────────────┼─────────────┼─────────────┼───────────────┨
@ -2783,14 +2783,14 @@ c <span class="hljs-number">7</span> <span class="hljs-number">8</span> <span
< / code > < / pre > < / div >
< div > < h2 id = "plotly" > < a href = "#plotly" name = "plotly" > #< / a > Plotly< / h2 > < pre > < code class = "python language-python hljs" > < span class = "hljs-comment" > # $ pip3 install plotly kaleido< / span >
< span class = "hljs-keyword" > from < / span > plotly.express < span class = "hljs-keyword" > import < / span > lin e
< Figure> = line(< DF> , x=< col_name> , y=< col_name> ) < span class = "hljs-comment" > # Or: line(x=< list> , y=< list> )< / span >
< div > < h2 id = "plotly" > < a href = "#plotly" name = "plotly" > #< / a > Plotly< / h2 > < pre > < code class = "python language-python hljs" > < span class = "hljs-comment" > # $ pip3 install pandas p lotly kaleido< / span >
< span class = "hljs-keyword" > import< / span > pandas < span class = "hljs-keyword" > as < / span > pd, plotly.express < span class = "hljs-keyword" > as < / span > ex
< Figure> = ex. line(< DF> , x=< col_name> , y=< col_name> ) < span class = "hljs-comment" > # Or: ex. line(x=< list> , y=< list> )< / span >
< Figure> .update_layout(margin=dict(t=< span class = "hljs-number" > 0< / span > , r=< span class = "hljs-number" > 0< / span > , b=< span class = "hljs-number" > 0< / span > , l=< span class = "hljs-number" > 0< / span > ), …) < span class = "hljs-comment" > # `paper_bgcolor='rgb(0, 0, 0)'`.< / span >
< Figure> .write_html/json/image(< span class = "hljs-string" > '< path> '< / span > ) < span class = "hljs-comment" > # Also < Figure> .show().< / span >
< / code > < / pre > < / div >
< div > < h4 id = "displaysalinechartoftotalcoronavirusdeathspermilliongroupedbycontinent" > Displays a line chart of total coronavirus deaths per million grouped by continent:< / h4 > < p > < / p > < div id = "2a950764-39fc-416d-97fe-0a6226a3095f" class = "plotly-graph-div" style = "height:340 px; width:100%;" > < / div > < pre > < code class = "python language-python hljs" > covid = pd.read_csv(< span class = "hljs-string" > 'https://covid.ourworldindata.org/data/owid-covid-data.csv'< / span > ,
< div > < h4 id = "displaysalinechartoftotalcoronavirusdeathspermilliongroupedbycontinent" > Displays a line chart of total coronavirus deaths per million grouped by continent:< / h4 > < p > < / p > < div id = "2a950764-39fc-416d-97fe-0a6226a3095f" class = "plotly-graph-div" style = "height:321 px; width:100%;" > < / div > < pre > < code class = "python language-python hljs" > covid = pd.read_csv(< span class = "hljs-string" > 'https://covid.ourworldindata.org/data/owid-covid-data.csv'< / span > ,
usecols=[< span class = "hljs-string" > 'iso_code'< / span > , < span class = "hljs-string" > 'date'< / span > , < span class = "hljs-string" > 'total_deaths'< / span > , < span class = "hljs-string" > 'population'< / span > ])
continents = pd.read_csv(< span class = "hljs-string" > 'https://gist.githubusercontent.com/stevewithington/20a69c0b6d2ff'< / span >
< span class = "hljs-string" > '846ea5d35e5fc47f26c/raw/country-and-continent-codes-list-csv.csv'< / span > ,
@ -2800,7 +2800,7 @@ df = df.groupby([<span class="hljs-string">'Continent_Name'</span>, <span class=
df[< span class = "hljs-string" > 'Total Deaths per Million'< / span > ] = df.total_deaths * < span class = "hljs-number" > 1e6< / span > / df.population
df = df[df.date > < span class = "hljs-string" > '2020-03-14'< / span > ]
df = df.rename({< span class = "hljs-string" > 'date'< / span > : < span class = "hljs-string" > 'Date'< / span > , < span class = "hljs-string" > 'Continent_Name'< / span > : < span class = "hljs-string" > 'Continent'< / span > }, axis=< span class = "hljs-string" > 'columns'< / span > )
line(df, x=< span class = "hljs-string" > 'Date'< / span > , y=< span class = "hljs-string" > 'Total Deaths per Million'< / span > , color=< span class = "hljs-string" > 'Continent'< / span > ).show()
ex. line(df, x=< span class = "hljs-string" > 'Date'< / span > , y=< span class = "hljs-string" > 'Total Deaths per Million'< / span > , color=< span class = "hljs-string" > 'Continent'< / span > ).show()
< / code > < / pre > < / div >