diff --git a/README.md b/README.md index 745fa4a..c667b50 100644 --- a/README.md +++ b/README.md @@ -2587,7 +2587,7 @@ with PyCallGraph(drawer): NumPy ----- -**Array manipulation mini-language. It can run up to one hundred times faster than the equivalent Python code.** +**Array manipulation mini-language. It can run up to one hundred times faster than the equivalent Python code. An even faster alternative that runs on a GPU is called CuPy.** ```python # $ pip3 install numpy @@ -3404,7 +3404,7 @@ def wrangle_data(covid, dow, gold, bitcoin): df = df.sort_index().interpolate() df = df.rolling(10, min_periods=1, center=True).mean() df = df.loc['2020-02-23':].iloc[:-2] - df = df / df.iloc[0] * 100 + df = (df / df.iloc[0]) * 100 return pd.concat([covid, df], axis=1, join='inner') def display_data(df): diff --git a/index.html b/index.html index a4662ac..32e6389 100644 --- a/index.html +++ b/index.html @@ -2235,7 +2235,7 @@ drawer = output.GraphvizOutput(output_file=filename) -

#NumPy

Array manipulation mini-language. It can run up to one hundred times faster than the equivalent Python code.

# $ pip3 install numpy
+

#NumPy

Array manipulation mini-language. It can run up to one hundred times faster than the equivalent Python code. An even faster alternative that runs on a GPU is called CuPy.

# $ pip3 install numpy
 import numpy as np
 
@@ -2888,7 +2888,7 @@ plotly.express.line(df, x='Date', y=10, min_periods=1, center=True).mean() df = df.loc['2020-02-23':].iloc[:-2] - df = df / df.iloc[0] * 100 + df = (df / df.iloc[0]) * 100 return pd.concat([covid, df], axis=1, join='inner') def display_data(df):