Browse Source

NumPy

pull/10/head
Jure Šorn 6 years ago
parent
commit
77e1a0edf9
1 changed files with 4 additions and 4 deletions
  1. 8
      README.md

8
README.md

@ -1457,8 +1457,8 @@ NumPy
**Array manipulation mini language. Can run up to 100 times faster than equivalent Python code.** **Array manipulation mini language. Can run up to 100 times faster than equivalent Python code.**
```python ```python
<array> = np.array(<list>) <array> = np.array(<list>)
<array> = np.ones(<shape>)
<array> = np.arange(from_inclusive, to_exclusive, step) <array> = np.arange(from_inclusive, to_exclusive, step)
<array> = np.ones(<shape>)
<array> = np.random.randint(from_inclusive, to_exclusive, <shape>) <array> = np.random.randint(from_inclusive, to_exclusive, <shape>)
``` ```
@ -1482,9 +1482,9 @@ right = [ 0.1 , 0.6 , 0.8 ] # Shape: (3)
1. If array shapes differ, left-pad the smaller shape with ones. 1. If array shapes differ, left-pad the smaller shape with ones.
```python ```python
left = [[0.1], [0.6], [0.8]] # Shape: (3, 1) left = [[0.1], [0.6], [0.8]] # Shape: (3, 1)
right = [[0.1 , 0.6 , 0.8]]) # Shape: (1, 3) <- ! right = [[0.1 , 0.6 , 0.8]] # Shape: (1, 3) <- !
``` ```
2. If any dimensions differ in size, expand the ones that have size 1, by duplicating their elements. 2. If any dimensions differ in size, expand the ones that have size 1 by duplicating their elements.
```python ```python
left = [[0.1, 0.1, 0.1], [0.6, 0.6, 0.6], [0.8, 0.8, 0.8]] # Shape: (3, 3) <- ! left = [[0.1, 0.1, 0.1], [0.6, 0.6, 0.6], [0.8, 0.8, 0.8]] # Shape: (3, 3) <- !
right = [[0.1, 0.6, 0.8], [0.1, 0.6, 0.8], [0.1, 0.6, 0.8]] # Shape: (3, 3) <- ! right = [[0.1, 0.6, 0.8], [0.1, 0.6, 0.8], [0.1, 0.6, 0.8]] # Shape: (3, 3) <- !
@ -1492,7 +1492,7 @@ right = [[0.1, 0.6, 0.8], [0.1, 0.6, 0.8], [0.1, 0.6, 0.8]] # Shape: (3, 3) <-
3. If neither non-matching dimension has size 1, rise an error. 3. If neither non-matching dimension has size 1, rise an error.
### Example ### Example
**For each point returns index of its nearest point: `[0.1, 0.6, 0.8] => [1, 2, 1])`.** **For each point returns index of its nearest point: `[0.1, 0.6, 0.8] => [1, 2, 1]`.**
```python ```python
>>> points = np.array([0.1, 0.6, 0.8]) >>> points = np.array([0.1, 0.6, 0.8])
array([ 0.1, 0.6, 0.8]) array([ 0.1, 0.6, 0.8])

|||||||
100:0
Loading…
Cancel
Save