diff --git a/README.md b/README.md index 68364c2..c8358e4 100644 --- a/README.md +++ b/README.md @@ -3189,7 +3189,6 @@ Name: a, dtype: int64 * **Use `'.index'` to get collection of keys and `'.index = '` to update them.** * **Only pass a list or Series to loc/iloc because `'obj[x, y]'` is converted to `'obj[(x, y)]'` and `'.loc[key_1, key_2]'` is how you retrieve a value from a multi-indexed Series.** * **Pandas uses NumPy types like `'np.int64'`. Series is converted to `'float64'` if we assign np.nan to any item. Use `'.astype()'` to get converted Series.** -* **Series will silently overflow if we run `'pd.Series([100], dtype="int8") + 100'`!** #### Series — Aggregate, Transform, Map: ```python diff --git a/index.html b/index.html index f09fa1d..7c52e27 100644 --- a/index.html +++ b/index.html @@ -2616,7 +2616,6 @@ Name: a, dtype: int64
  • Use '<S>.index' to get collection of keys and '<S>.index = <coll>' to update them.
  • Only pass a list or Series to loc/iloc because 'obj[x, y]' is converted to 'obj[(x, y)]' and '<S>.loc[key_1, key_2]' is how you retrieve a value from a multi-indexed Series.
  • Pandas uses NumPy types like 'np.int64'. Series is converted to 'float64' if we assign np.nan to any item. Use '<S>.astype(<str/type>)' to get converted Series.
  • -
  • Series will silently overflow if we run 'pd.Series([100], dtype="int8") + 100'!
  • Series — Aggregate, Transform, Map:

    <el> = <S>.sum/max/mean/std/idxmax/count()     # Or: <S>.agg(lambda <S>: <el>)
     <S>  = <S>.rank/diff/cumsum/ffill/interpol…()  # Or: <S>.agg/transform(lambda <S>: <S>)