* **Shape is a tuple of dimension sizes. A 100x50 RGB image has shape (50, 100, 3).**
* **Axis is an index of the dimension that gets aggregated. Leftmost dimension has index 0. Summing the RGB image along axis 2 will return a greyscale image with shape (50, 100).**
* **Passing a tuple of axes will chain the operations like this: `'<array>.<method>(axis_1).<method>(axis_2 - 1 if axis_2 > axis_1 else axis_2)'`.**
<li><strong>The "latest and greatest" profiler that can also monitor GPU usage is called <ahref="https://github.com/plasma-umass/scalene">Scalene</a>.</strong></li>
</ul>
<div><h2id="numpy"><ahref="#numpy"name="numpy">#</a>NumPy</h2><p><strong>Array manipulation mini-language. It can run up to one hundred times faster than the equivalent Python code. An even faster alternative that runs on a GPU is called CuPy.</strong></p><pre><codeclass="python language-python hljs"><spanclass="hljs-comment"># $ pip3 install numpy</span>
<pre><codeclass="python language-python hljs"><array> = np.copy/abs/sqrt/log/int64(<array>) <spanclass="hljs-comment"># Returns new array of the same shape.</span>
<li><strong>Shape is a tuple of dimension sizes. A 100x50 RGB image has shape (50, 100, 3).</strong></li>
<li><strong>Axis is an index of the dimension that gets aggregated. Leftmost dimension has index 0. Summing the RGB image along axis 2 will return a greyscale image with shape (50, 100).</strong></li>
<li><strong>Passing a tuple of axes will chain the operations like this: <codeclass="python hljs"><spanclass="hljs-string">'<array>.<method>(axis_1).<method>(axis_2 - 1 if axis_2 > axis_1 else axis_2)'</span></code>.</strong></li>
<div><h4id="displaysalinechartoftotalcoronavirusdeathspermilliongroupedbycontinent">Displays a line chart of total coronavirus deaths per million grouped by continent:</h4><p></p><divid="2a950764-39fc-416d-97fe-0a6226a3095f"class="plotly-graph-div"style="height:340px; width:100%;"></div><pre><codeclass="python language-python hljs">covid = pd.read_csv(<spanclass="hljs-string">'https://covid.ourworldindata.org/data/owid-covid-data.csv'</span>,