|
|
@ -2858,7 +2858,7 @@ continents = pd.read_csv(<span class="hljs-string">'https://datahub.io/JohnSnowL |
|
|
|
df = pd.merge(covid, continents, left_on=<span class="hljs-string">'iso_code'</span>, right_on=<span class="hljs-string">'Three_Letter_Country_Code'</span>) |
|
|
|
df = df.groupby([<span class="hljs-string">'Continent_Name'</span>, <span class="hljs-string">'date'</span>]).sum().reset_index() |
|
|
|
df[<span class="hljs-string">'Total Deaths per Million'</span>] = df.total_deaths * <span class="hljs-number">1e6</span> / df.population |
|
|
|
df = df[(<span class="hljs-string">'2020-03-14'</span> < df.date) & (df.date < <span class="hljs-string">'2020-10-23'</span>)] |
|
|
|
df = df[(<span class="hljs-string">'2020-03-14'</span> < df.date) & (df.date < <span class="hljs-string">'2020-10-26'</span>)] |
|
|
|
df = df.rename({<span class="hljs-string">'date'</span>: <span class="hljs-string">'Date'</span>, <span class="hljs-string">'Continent_Name'</span>: <span class="hljs-string">'Continent'</span>}, axis=<span class="hljs-string">'columns'</span>) |
|
|
|
line(df, x=<span class="hljs-string">'Date'</span>, y=<span class="hljs-string">'Total Deaths per Million'</span>, color=<span class="hljs-string">'Continent'</span>).show() |
|
|
|
</code></pre></div> |
|
|
@ -2879,8 +2879,8 @@ line(df, x=<span class="hljs-string">'Date'</span>, y=<span class="hljs-string"> |
|
|
|
url = <span class="hljs-string">f'<span class="hljs-subst">{BASE_URL}</span><span class="hljs-subst">{id_}</span>?period1=1579651200&period2=<span class="hljs-subst">{now}</span>&interval=1d&events=history'</span> |
|
|
|
<span class="hljs-keyword">return</span> pd.read_csv(url, usecols=[<span class="hljs-string">'Date'</span>, <span class="hljs-string">'Close'</span>]).set_index(<span class="hljs-string">'Date'</span>).Close |
|
|
|
covid = pd.read_csv(<span class="hljs-string">'https://covid.ourworldindata.org/data/owid-covid-data.csv'</span>, |
|
|
|
usecols=[<span class="hljs-string">'date'</span>, <span class="hljs-string">'total_cases'</span>]) |
|
|
|
covid = covid.groupby(<span class="hljs-string">'date'</span>).sum() |
|
|
|
usecols=[<span class="hljs-string">'location'</span>, <span class="hljs-string">'date'</span>, <span class="hljs-string">'total_cases'</span>]) |
|
|
|
covid = covid[covid.location == <span class="hljs-string">'World'</span>].set_index(<span class="hljs-string">'date'</span>).total_cases |
|
|
|
dow, gold, bitcoin = [scrape_yahoo(id_) <span class="hljs-keyword">for</span> id_ <span class="hljs-keyword">in</span> (<span class="hljs-string">'^DJI'</span>, <span class="hljs-string">'GC=F'</span>, <span class="hljs-string">'BTC-USD'</span>)] |
|
|
|
dow.name, gold.name, bitcoin.name = <span class="hljs-string">'Dow Jones'</span>, <span class="hljs-string">'Gold'</span>, <span class="hljs-string">'Bitcoin'</span> |
|
|
|
<span class="hljs-keyword">return</span> covid, dow, gold, bitcoin |
|
|
|