From 1f057ed1fe1588e3a6f65e6b7681a297632ee908 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jure=20=C5=A0orn?= Date: Sun, 25 Dec 2022 02:17:12 +0100 Subject: [PATCH] NumPy --- README.md | 4 ++-- index.html | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index 95a1a71..2b797e8 100644 --- a/README.md +++ b/README.md @@ -2650,8 +2650,8 @@ import numpy as np ``` ```python - = .sum/min/mean/var/std(axis) # Passed dimension gets aggregated. - = .argmin(axis) # Returns indexes of smallest elements. + = .sum/min/mean/var/std([axis]) # Passed dimension gets aggregated. + = .argmin([axis]) # Returns indexes of smallest elements. = np.apply_along_axis(, axis, ) # Func can return a scalar or array. ``` diff --git a/index.html b/index.html index 94621da..f8dd7b7 100644 --- a/index.html +++ b/index.html @@ -2164,8 +2164,8 @@ drawer = cg.output.GraphvizOutput(output_file=filename) <array> = <array>.flatten() # Collapses array into one dimension. <view> = <array>.squeeze() # Removes dimensions of length one. -
<array> = <array>.sum/min/mean/var/std(axis)            # Passed dimension gets aggregated.
-<array> = <array>.argmin(axis)                          # Returns indexes of smallest elements.
+
<array> = <array>.sum/min/mean/var/std([axis])          # Passed dimension gets aggregated.
+<array> = <array>.argmin([axis])                        # Returns indexes of smallest elements.
 <array> = np.apply_along_axis(<func>, axis, <array>)    # Func can return a scalar or array.