* **Use `'<S>.index'` to get collection of keys and `'<S>.index = <coll>'` to update them.**
* **Only pass a list or Series to loc/iloc because `'obj[x, y]'` is converted to `'obj[(x, y)]'` and `'<S>.loc[key_1, key_2]'` is how you retrieve a value from a multi-indexed Series.**
* **Pandas uses NumPy types like `'np.int64'`. Series is converted to `'float64'` if we assign np.nan to any item. Use `'<S>.astype(<str/type>)'` to get converted Series.**
* **Series will silently overflow if you run `'pd.Series([100], dtype="int8") + 100'`!**
* **Series will silently overflow if we run `'pd.Series([100], dtype="int8") + 100'`!**
<li><strong>Use <codeclass="python hljs"><spanclass="hljs-string">'<S>.index'</span></code> to get collection of keys and <codeclass="python hljs"><spanclass="hljs-string">'<S>.index = <coll>'</span></code> to update them.</strong></li>
<li><strong>Only pass a list or Series to loc/iloc because <codeclass="python hljs"><spanclass="hljs-string">'obj[x, y]'</span></code> is converted to <codeclass="python hljs"><spanclass="hljs-string">'obj[(x, y)]'</span></code> and <codeclass="python hljs"><spanclass="hljs-string">'<S>.loc[key_1, key_2]'</span></code> is how you retrieve a value from a multi-indexed Series.</strong></li>
<li><strong>Pandas uses NumPy types like <codeclass="python hljs"><spanclass="hljs-string">'np.int64'</span></code>. Series is converted to <codeclass="python hljs"><spanclass="hljs-string">'float64'</span></code> if we assign np.nan to any item. Use <codeclass="python hljs"><spanclass="hljs-string">'<S>.astype(<str/type>)'</span></code> to get converted Series.</strong></li>
<li><strong>Series will silently overflow if you run <codeclass="python hljs"><spanclass="hljs-string">'pd.Series([100], dtype="int8") + 100'</span></code>!</strong></li>
<li><strong>Series will silently overflow if we run <codeclass="python hljs"><spanclass="hljs-string">'pd.Series([100], dtype="int8") + 100'</span></code>!</strong></li>