diff --git a/docs/azure-csi.md b/docs/azure-csi.md index d4e04d275..1cc3a6848 100644 --- a/docs/azure-csi.md +++ b/docs/azure-csi.md @@ -57,19 +57,28 @@ The name of the network security group your instances are in, can be retrieved v These will have to be generated first: - Create an Azure AD Application with: -`az ad app create --display-name kubespray --identifier-uris http://kubespray --homepage http://kubespray.com --password CLIENT_SECRET` + + ```ShellSession + az ad app create --display-name kubespray --identifier-uris http://kubespray --homepage http://kubespray.com --password CLIENT_SECRET + ``` Display name, identifier-uri, homepage and the password can be chosen Note the AppId in the output. - Create Service principal for the application with: -`az ad sp create --id AppId` + + ```ShellSession + az ad sp create --id AppId + ``` This is the AppId from the last command - Create the role assignment with: -`az role assignment create --role "Owner" --assignee http://kubespray --subscription SUBSCRIPTION_ID` + + ```ShellSession + az role assignment create --role "Owner" --assignee http://kubespray --subscription SUBSCRIPTION_ID + ``` azure\_csi\_aad\_client\_id must be set to the AppId, azure\_csi\_aad\_client\_secret is your chosen secret. diff --git a/docs/azure.md b/docs/azure.md index 39cb9f206..a58ca4576 100644 --- a/docs/azure.md +++ b/docs/azure.md @@ -71,14 +71,27 @@ The name of the resource group that contains the route table. Defaults to `azur These will have to be generated first: - Create an Azure AD Application with: -`az ad app create --display-name kubernetes --identifier-uris http://kubernetes --homepage http://example.com --password CLIENT_SECRET` + + ```ShellSession + az ad app create --display-name kubernetes --identifier-uris http://kubernetes --homepage http://example.com --password CLIENT_SECRET + ``` + display name, identifier-uri, homepage and the password can be chosen Note the AppId in the output. + - Create Service principal for the application with: -`az ad sp create --id AppId` + + ```ShellSession + az ad sp create --id AppId + ``` + This is the AppId from the last command + - Create the role assignment with: -`az role assignment create --role "Owner" --assignee http://kubernetes --subscription SUBSCRIPTION_ID` + + ```ShellSession + az role assignment create --role "Owner" --assignee http://kubernetes --subscription SUBSCRIPTION_ID + ``` azure\_aad\_client\_id must be set to the AppId, azure\_aad\_client\_secret is your chosen secret. diff --git a/docs/bootstrap-os.md b/docs/bootstrap-os.md index c9f4ffd54..c2a75c06e 100644 --- a/docs/bootstrap-os.md +++ b/docs/bootstrap-os.md @@ -48,11 +48,13 @@ The `kubespray-defaults` role is expected to be run before this role. Remember to disable fact gathering since Python might not be present on hosts. - - hosts: all - gather_facts: false # not all hosts might be able to run modules yet - roles: - - kubespray-defaults - - bootstrap-os +```yaml +- hosts: all + gather_facts: false # not all hosts might be able to run modules yet + roles: + - kubespray-defaults + - bootstrap-os +``` ## License diff --git a/docs/calico.md b/docs/calico.md index c733c3c0c..256502309 100644 --- a/docs/calico.md +++ b/docs/calico.md @@ -124,8 +124,7 @@ You need to edit your inventory and add: * `calico_rr` group with nodes in it. `calico_rr` can be combined with `kube_node` and/or `kube_control_plane`. `calico_rr` group also must be a child group of `k8s_cluster` group. -* `cluster_id` by route reflector node/group (see details -[here](https://hub.docker.com/r/calico/routereflector/)) +* `cluster_id` by route reflector node/group (see details [here](https://hub.docker.com/r/calico/routereflector/)) Here's an example of Kubespray inventory with standalone route reflectors: diff --git a/docs/debian.md b/docs/debian.md index 28d8f1571..8c2563778 100644 --- a/docs/debian.md +++ b/docs/debian.md @@ -3,34 +3,39 @@ Debian Jessie installation Notes: - Add - - ```GRUB_CMDLINE_LINUX="cgroup_enable=memory swapaccount=1"``` - - to /etc/default/grub. Then update with - + + ```ini + GRUB_CMDLINE_LINUX="cgroup_enable=memory swapaccount=1" + ``` + + to `/etc/default/grub`. Then update with + ```ShellSession - sudo update-grub - sudo update-grub2 - sudo reboot + sudo update-grub + sudo update-grub2 + sudo reboot ``` - + - Add the [backports](https://backports.debian.org/Instructions/) which contain Systemd 2.30 and update Systemd. - - ```apt-get -t jessie-backports install systemd``` - + + ```ShellSession + apt-get -t jessie-backports install systemd + ``` + (Necessary because the default Systemd version (2.15) does not support the "Delegate" directive in service files) - + - Add the Ansible repository and install Ansible to get a proper version ```ShellSession sudo add-apt-repository ppa:ansible/ansible sudo apt-get update sudo apt-get install ansible - ``` - Install Jinja2 and Python-Netaddr - ```sudo apt-get install python-jinja2=2.8-1~bpo8+1 python-netaddr``` - + ```ShellSession + sudo apt-get install python-jinja2=2.8-1~bpo8+1 python-netaddr + ``` + Now you can continue with [Preparing your deployment](getting-started.md#starting-custom-deployment) diff --git a/docs/fcos.md b/docs/fcos.md index c91d8b1d4..238bdf4cf 100644 --- a/docs/fcos.md +++ b/docs/fcos.md @@ -54,7 +54,7 @@ Prepare ignition and serve via http (a.e. python -m http.server ) ### create guest -```shell script +```ShellSeasion machine_name=myfcos1 ignition_url=http://mywebserver/fcos.ign diff --git a/docs/gcp-lb.md b/docs/gcp-lb.md index bb378f67b..ad782a211 100644 --- a/docs/gcp-lb.md +++ b/docs/gcp-lb.md @@ -2,15 +2,19 @@ Google Cloud Platform can be used for creation of Kubernetes Service Load Balancer. -This feature is able to deliver by adding parameters to kube-controller-manager and kubelet. You need specify: +This feature is able to deliver by adding parameters to `kube-controller-manager` and `kubelet`. You need specify: +``` --cloud-provider=gce --cloud-config=/etc/kubernetes/cloud-config +``` -To get working it in kubespray, you need to add tag to GCE instances and specify it in kubespray group vars and also set cloud_provider to gce. So for example, in file group_vars/all/gcp.yml: +To get working it in kubespray, you need to add tag to GCE instances and specify it in kubespray group vars and also set `cloud_provider` to `gce`. So for example, in file `group_vars/all/gcp.yml`: +``` cloud_provider: gce gce_node_tags: k8s-lb +``` -When you will setup it and create SVC in Kubernetes with type=LoadBalancer, cloud provider will create public IP and will set firewall. +When you will setup it and create SVC in Kubernetes with `type=LoadBalancer`, cloud provider will create public IP and will set firewall. Note: Cloud provider run under VM service account, so this account needs to have correct permissions to be able to create all GCP resources. diff --git a/docs/kubernetes-apps/registry.md b/docs/kubernetes-apps/registry.md index 6ca814013..182f10a52 100644 --- a/docs/kubernetes-apps/registry.md +++ b/docs/kubernetes-apps/registry.md @@ -29,8 +29,7 @@ use Kubernetes's `PersistentVolume` abstraction. The following template is expanded by `salt` in the GCE cluster turnup, but can easily be adapted to other situations: - -``` yaml +```yaml kind: PersistentVolume apiVersion: v1 metadata: @@ -46,7 +45,6 @@ spec: fsType: "ext4" {% endif %} ``` - If, for example, you wanted to use NFS you would just need to change the `gcePersistentDisk` block to `nfs`. See @@ -68,8 +66,7 @@ Now that the Kubernetes cluster knows that some storage exists, you can put a claim on that storage. As with the `PersistentVolume` above, you can start with the `salt` template: - -``` yaml +```yaml kind: PersistentVolumeClaim apiVersion: v1 metadata: @@ -82,7 +79,6 @@ spec: requests: storage: {{ pillar['cluster_registry_disk_size'] }} ``` - This tells Kubernetes that you want to use storage, and the `PersistentVolume` you created before will be bound to this claim (unless you have other @@ -93,8 +89,7 @@ gives you the right to use this storage until you release the claim. Now we can run a Docker registry: - -``` yaml +```yaml apiVersion: v1 kind: ReplicationController metadata: @@ -138,7 +133,6 @@ spec: persistentVolumeClaim: claimName: kube-registry-pvc ``` - *Note:* that if you have set multiple replicas, make sure your CSI driver has support for the `ReadWriteMany` accessMode. @@ -146,8 +140,7 @@ spec: Now that we have a registry `Pod` running, we can expose it as a Service: - -``` yaml +```yaml apiVersion: v1 kind: Service metadata: @@ -164,7 +157,6 @@ spec: port: 5000 protocol: TCP ``` - ## Expose the registry on each node @@ -172,8 +164,7 @@ Now that we have a running `Service`, we need to expose it onto each Kubernetes `Node` so that Docker will see it as `localhost`. We can load a `Pod` on every node by creating following daemonset. - -``` yaml +```yaml apiVersion: apps/v1 kind: DaemonSet metadata: @@ -207,7 +198,6 @@ spec: containerPort: 80 hostPort: 5000 ``` - When modifying replication-controller, service and daemon-set definitions, take care to ensure *unique* identifiers for the rc-svc couple and the daemon-set. @@ -219,7 +209,7 @@ This ensures that port 5000 on each node is directed to the registry `Service`. You should be able to verify that it is running by hitting port 5000 with a web browser and getting a 404 error: -``` console +```ShellSession $ curl localhost:5000 404 page not found ``` @@ -229,7 +219,7 @@ $ curl localhost:5000 To use an image hosted by this registry, simply say this in your `Pod`'s `spec.containers[].image` field: -``` yaml +```yaml image: localhost:5000/user/container ``` @@ -241,7 +231,7 @@ building locally and want to push to your cluster. You can use `kubectl` to set up a port-forward from your local node to a running Pod: -``` console +```ShellSession $ POD=$(kubectl get pods --namespace kube-system -l k8s-app=registry \ -o template --template '{{range .items}}{{.metadata.name}} {{.status.phase}}{{"\n"}}{{end}}' \ | grep Running | head -1 | cut -f1 -d' ') diff --git a/docs/setting-up-your-first-cluster.md b/docs/setting-up-your-first-cluster.md index 0a41e5aa2..5f0181388 100644 --- a/docs/setting-up-your-first-cluster.md +++ b/docs/setting-up-your-first-cluster.md @@ -252,11 +252,7 @@ Ansible will now execute the playbook, this can take up to 20 minutes. We will leverage a kubeconfig file from one of the controller nodes to access the cluster as administrator from our local workstation. -> In this simplified set-up, we did not include a load balancer that usually - sits on top of the -three controller nodes for a high available API server endpoint. In this - simplified tutorial we connect directly to one of the three - controllers. +> In this simplified set-up, we did not include a load balancer that usually sits on top of the three controller nodes for a high available API server endpoint. In this simplified tutorial we connect directly to one of the three controllers. First, we need to edit the permission of the kubeconfig file on one of the controller nodes: diff --git a/docs/vagrant.md b/docs/vagrant.md index 452b67783..b7f702ce8 100644 --- a/docs/vagrant.md +++ b/docs/vagrant.md @@ -58,7 +58,7 @@ see [download documentation](/docs/downloads.md). The following is an example of setting up and running kubespray using `vagrant`. For repeated runs, you could save the script to a file in the root of the -kubespray and run it by executing 'source . +kubespray and run it by executing `source `. ```ShellSession # use virtualenv to install all python requirements diff --git a/docs/vars.md b/docs/vars.md index 56f8ff836..ca10bf308 100644 --- a/docs/vars.md +++ b/docs/vars.md @@ -81,7 +81,7 @@ following default cluster parameters: raise an assertion in playbooks if the `kubelet_max_pods` var also isn't adjusted accordingly (assertion not applicable to calico which doesn't use this as a hard limit, see [Calico IP block sizes](https://docs.projectcalico.org/reference/resources/ippool#block-sizes). - + * *enable_dual_stack_networks* - Setting this to true will provision both IPv4 and IPv6 networking for pods and services. * *kube_service_addresses_ipv6* - Subnet for cluster IPv6 IPs (default is ``fd85:ee78:d8a6:8607::1000/116``). Must not overlap with ``kube_pods_subnet_ipv6``. @@ -99,7 +99,7 @@ following default cluster parameters: * *coredns_k8s_external_zone* - Zone that will be used when CoreDNS k8s_external plugin is enabled (default is k8s_external.local) - + * *enable_coredns_k8s_endpoint_pod_names* - If enabled, it configures endpoint_pod_names option for kubernetes plugin. on the CoreDNS service.