mirror of https://github.com/doccano/doccano.git
pythonannotation-tooldatasetsactive-learningtext-annotationdatasetnatural-language-processingdata-labelingmachine-learning
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
171 lines
5.4 KiB
171 lines
5.4 KiB
import io
|
|
|
|
from django.test import TestCase
|
|
|
|
from seqeval.metrics.sequence_labeling import get_entities
|
|
|
|
from ..models import Label, Document
|
|
from ..utils import BaseStorage, ClassificationStorage, SequenceLabelingStorage, Seq2seqStorage, CoNLLParser
|
|
from ..utils import Color, iterable_to_io
|
|
|
|
|
|
class TestColor(TestCase):
|
|
def test_random_color(self):
|
|
color = Color.random()
|
|
self.assertTrue(0 <= color.red <= 255)
|
|
self.assertTrue(0 <= color.green <= 255)
|
|
self.assertTrue(0 <= color.blue <= 255)
|
|
|
|
def test_hex(self):
|
|
color = Color(red=255, green=192, blue=203)
|
|
self.assertEqual(color.hex, '#ffc0cb')
|
|
|
|
def test_contrast_color(self):
|
|
color = Color(red=255, green=192, blue=203)
|
|
self.assertEqual(color.contrast_color.hex, '#000000')
|
|
|
|
color = Color(red=199, green=21, blue=133)
|
|
self.assertEqual(color.contrast_color.hex, '#ffffff')
|
|
|
|
|
|
class TestBaseStorage(TestCase):
|
|
def test_extract_label(self):
|
|
data = [{'labels': ['positive']}, {'labels': ['negative']}]
|
|
|
|
actual = BaseStorage.extract_label(data)
|
|
|
|
self.assertEqual(actual, [['positive'], ['negative']])
|
|
|
|
def test_exclude_created_labels(self):
|
|
labels = ['positive', 'negative']
|
|
created = {'positive': Label(text='positive')}
|
|
|
|
actual = BaseStorage.exclude_created_labels(labels, created)
|
|
|
|
self.assertEqual(actual, ['negative'])
|
|
|
|
def test_to_serializer_format(self):
|
|
labels = ['positive']
|
|
created = {}
|
|
|
|
actual = BaseStorage.to_serializer_format(labels, created, random_seed=123)
|
|
|
|
self.assertEqual(actual, [{
|
|
'text': 'positive',
|
|
'prefix_key': None,
|
|
'suffix_key': 'p',
|
|
'background_color': '#0d1668',
|
|
'text_color': '#ffffff',
|
|
}])
|
|
|
|
def test_get_shortkey_without_existing_shortkey(self):
|
|
label = 'positive'
|
|
created = {}
|
|
|
|
actual = BaseStorage.get_shortkey(label, created)
|
|
|
|
self.assertEqual(actual, ('p', None))
|
|
|
|
def test_get_shortkey_with_existing_shortkey(self):
|
|
label = 'positive'
|
|
created = {('p', None)}
|
|
|
|
actual = BaseStorage.get_shortkey(label, created)
|
|
|
|
self.assertEqual(actual, ('p', 'ctrl'))
|
|
|
|
def test_update_saved_labels(self):
|
|
saved = {'positive': Label(text='positive', text_color='#000000')}
|
|
new = [Label(text='positive', text_color='#ffffff')]
|
|
|
|
actual = BaseStorage.update_saved_labels(saved, new)
|
|
|
|
self.assertEqual(actual['positive'].text_color, '#ffffff')
|
|
|
|
|
|
class TestClassificationStorage(TestCase):
|
|
def test_extract_unique_labels(self):
|
|
labels = [['positive'], ['positive', 'negative'], ['negative']]
|
|
|
|
actual = ClassificationStorage.extract_unique_labels(labels)
|
|
|
|
self.assertCountEqual(actual, ['positive', 'negative'])
|
|
|
|
def test_make_annotations(self):
|
|
docs = [Document(text='a', id=1), Document(text='b', id=2), Document(text='c', id=3)]
|
|
labels = [['positive'], ['positive', 'negative'], ['negative']]
|
|
saved_labels = {'positive': Label(text='positive', id=1), 'negative': Label(text='negative', id=2)}
|
|
|
|
actual = ClassificationStorage.make_annotations(docs, labels, saved_labels)
|
|
|
|
self.assertCountEqual(actual, [
|
|
{'document': 1, 'label': 1},
|
|
{'document': 2, 'label': 1},
|
|
{'document': 2, 'label': 2},
|
|
{'document': 3, 'label': 2},
|
|
])
|
|
|
|
|
|
class TestSequenceLabelingStorage(TestCase):
|
|
def test_extract_unique_labels(self):
|
|
labels = [[[0, 1, 'LOC']], [[3, 4, 'ORG']]]
|
|
|
|
actual = SequenceLabelingStorage.extract_unique_labels(labels)
|
|
|
|
self.assertCountEqual(actual, ['LOC', 'ORG'])
|
|
|
|
def test_make_annotations(self):
|
|
docs = [Document(text='a', id=1), Document(text='b', id=2)]
|
|
labels = [[[0, 1, 'LOC']], [[3, 4, 'ORG']]]
|
|
saved_labels = {'LOC': Label(text='LOC', id=1), 'ORG': Label(text='ORG', id=2)}
|
|
|
|
actual = SequenceLabelingStorage.make_annotations(docs, labels, saved_labels)
|
|
|
|
self.assertEqual(actual, [
|
|
{'document': 1, 'label': 1, 'start_offset': 0, 'end_offset': 1},
|
|
{'document': 2, 'label': 2, 'start_offset': 3, 'end_offset': 4},
|
|
])
|
|
|
|
|
|
class TestSeq2seqStorage(TestCase):
|
|
def test_make_annotations(self):
|
|
docs = [Document(text='a', id=1), Document(text='b', id=2)]
|
|
labels = [['Hello!'], ['How are you?', "What's up?"]]
|
|
|
|
actual = Seq2seqStorage.make_annotations(docs, labels)
|
|
|
|
self.assertEqual(actual, [
|
|
{'document': 1, 'text': 'Hello!'},
|
|
{'document': 2, 'text': 'How are you?'},
|
|
{'document': 2, 'text': "What's up?"},
|
|
])
|
|
|
|
|
|
class TestCoNLLParser(TestCase):
|
|
def test_calc_char_offset(self):
|
|
f = io.BytesIO(
|
|
b"EU\tORG\n"
|
|
b"rejects\t_\n"
|
|
b"German\tMISC\n"
|
|
b"call\t_\n"
|
|
)
|
|
|
|
actual = next(CoNLLParser().parse(f))[0]
|
|
|
|
self.assertEqual(actual, {
|
|
'text': 'EU rejects German call',
|
|
'labels': [[0, 2, 'ORG'], [11, 17, 'MISC']]
|
|
})
|
|
|
|
|
|
class TestIterableToIO(TestCase):
|
|
def test(self):
|
|
def iterable():
|
|
yield b'fo'
|
|
yield b'o\nbar\n'
|
|
yield b'baz\nrest'
|
|
|
|
stream = iterable_to_io(iterable())
|
|
stream = io.TextIOWrapper(stream)
|
|
|
|
self.assertEqual(stream.readlines(), ['foo\n', 'bar\n', 'baz\n', 'rest'])
|