mirror of https://github.com/doccano/doccano.git
pythondatasetsactive-learningtext-annotationdatasetnatural-language-processingdata-labelingmachine-learningannotation-tool
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
261 lines
9.9 KiB
261 lines
9.9 KiB
import json
|
|
from django.core.exceptions import ValidationError
|
|
from django.db import models
|
|
from django.urls import reverse
|
|
from django.contrib.auth.models import User
|
|
from django.contrib.staticfiles.storage import staticfiles_storage
|
|
from .utils import get_key_choices
|
|
|
|
|
|
class Project(models.Model):
|
|
DOCUMENT_CLASSIFICATION = 'DocumentClassification'
|
|
SEQUENCE_LABELING = 'SequenceLabeling'
|
|
Seq2seq = 'Seq2seq'
|
|
|
|
PROJECT_CHOICES = (
|
|
(DOCUMENT_CLASSIFICATION, 'document classification'),
|
|
(SEQUENCE_LABELING, 'sequence labeling'),
|
|
(Seq2seq, 'sequence to sequence'),
|
|
)
|
|
|
|
name = models.CharField(max_length=100)
|
|
description = models.CharField(max_length=500)
|
|
guideline = models.TextField()
|
|
created_at = models.DateTimeField(auto_now_add=True)
|
|
updated_at = models.DateTimeField(auto_now=True)
|
|
users = models.ManyToManyField(User, related_name='projects')
|
|
project_type = models.CharField(max_length=30, choices=PROJECT_CHOICES)
|
|
|
|
def get_absolute_url(self):
|
|
return reverse('upload', args=[self.id])
|
|
|
|
def is_type_of(self, project_type):
|
|
return project_type == self.project_type
|
|
|
|
def get_progress(self, user):
|
|
docs = self.get_documents(is_null=True, user=user)
|
|
total = self.documents.count()
|
|
remaining = docs.count()
|
|
return {'total': total, 'remaining': remaining}
|
|
|
|
@property
|
|
def image(self):
|
|
if self.is_type_of(self.DOCUMENT_CLASSIFICATION):
|
|
url = staticfiles_storage.url('images/cat-1045782_640.jpg')
|
|
elif self.is_type_of(self.SEQUENCE_LABELING):
|
|
url = staticfiles_storage.url('images/cat-3449999_640.jpg')
|
|
elif self.is_type_of(self.Seq2seq):
|
|
url = staticfiles_storage.url('images/tiger-768574_640.jpg')
|
|
|
|
return url
|
|
|
|
def get_template_name(self):
|
|
if self.is_type_of(Project.DOCUMENT_CLASSIFICATION):
|
|
template_name = 'annotation/document_classification.html'
|
|
elif self.is_type_of(Project.SEQUENCE_LABELING):
|
|
template_name = 'annotation/sequence_labeling.html'
|
|
elif self.is_type_of(Project.Seq2seq):
|
|
template_name = 'annotation/seq2seq.html'
|
|
else:
|
|
raise ValueError('Template does not exist')
|
|
|
|
return template_name
|
|
|
|
def get_documents(self, is_null=True, user=None):
|
|
docs = self.documents.all()
|
|
if self.is_type_of(Project.DOCUMENT_CLASSIFICATION):
|
|
if user:
|
|
docs = docs.exclude(doc_annotations__user=user)
|
|
else:
|
|
docs = docs.filter(doc_annotations__isnull=is_null)
|
|
elif self.is_type_of(Project.SEQUENCE_LABELING):
|
|
if user:
|
|
docs = docs.exclude(seq_annotations__user=user)
|
|
else:
|
|
docs = docs.filter(seq_annotations__isnull=is_null)
|
|
elif self.is_type_of(Project.Seq2seq):
|
|
if user:
|
|
docs = docs.exclude(seq2seq_annotations__user=user)
|
|
else:
|
|
docs = docs.filter(seq2seq_annotations__isnull=is_null)
|
|
else:
|
|
raise ValueError('Invalid project_type')
|
|
|
|
return docs
|
|
|
|
def get_document_serializer(self):
|
|
from .serializers import ClassificationDocumentSerializer
|
|
from .serializers import SequenceDocumentSerializer
|
|
from .serializers import Seq2seqDocumentSerializer
|
|
if self.is_type_of(Project.DOCUMENT_CLASSIFICATION):
|
|
return ClassificationDocumentSerializer
|
|
elif self.is_type_of(Project.SEQUENCE_LABELING):
|
|
return SequenceDocumentSerializer
|
|
elif self.is_type_of(Project.Seq2seq):
|
|
return Seq2seqDocumentSerializer
|
|
else:
|
|
raise ValueError('Invalid project_type')
|
|
|
|
def get_annotation_serializer(self):
|
|
from .serializers import DocumentAnnotationSerializer
|
|
from .serializers import SequenceAnnotationSerializer
|
|
from .serializers import Seq2seqAnnotationSerializer
|
|
if self.is_type_of(Project.DOCUMENT_CLASSIFICATION):
|
|
return DocumentAnnotationSerializer
|
|
elif self.is_type_of(Project.SEQUENCE_LABELING):
|
|
return SequenceAnnotationSerializer
|
|
elif self.is_type_of(Project.Seq2seq):
|
|
return Seq2seqAnnotationSerializer
|
|
|
|
def get_annotation_class(self):
|
|
if self.is_type_of(Project.DOCUMENT_CLASSIFICATION):
|
|
return DocumentAnnotation
|
|
elif self.is_type_of(Project.SEQUENCE_LABELING):
|
|
return SequenceAnnotation
|
|
elif self.is_type_of(Project.Seq2seq):
|
|
return Seq2seqAnnotation
|
|
|
|
def __str__(self):
|
|
return self.name
|
|
|
|
|
|
class Label(models.Model):
|
|
KEY_CHOICES = get_key_choices()
|
|
COLOR_CHOICES = ()
|
|
|
|
text = models.CharField(max_length=100)
|
|
shortcut = models.CharField(max_length=15, blank=True, null=True, choices=KEY_CHOICES)
|
|
project = models.ForeignKey(Project, related_name='labels', on_delete=models.CASCADE)
|
|
background_color = models.CharField(max_length=7, default='#209cee')
|
|
text_color = models.CharField(max_length=7, default='#ffffff')
|
|
|
|
def __str__(self):
|
|
return self.text
|
|
|
|
class Meta:
|
|
unique_together = (
|
|
('project', 'text'),
|
|
('project', 'shortcut')
|
|
)
|
|
|
|
|
|
class Document(models.Model):
|
|
text = models.TextField()
|
|
project = models.ForeignKey(Project, related_name='documents', on_delete=models.CASCADE)
|
|
metadata = models.TextField(default='{}')
|
|
|
|
def get_annotations(self):
|
|
if self.project.is_type_of(Project.DOCUMENT_CLASSIFICATION):
|
|
return self.doc_annotations.all()
|
|
elif self.project.is_type_of(Project.SEQUENCE_LABELING):
|
|
return self.seq_annotations.all()
|
|
elif self.project.is_type_of(Project.Seq2seq):
|
|
return self.seq2seq_annotations.all()
|
|
|
|
def to_csv(self):
|
|
return self.make_dataset()
|
|
|
|
def make_dataset(self):
|
|
if self.project.is_type_of(Project.DOCUMENT_CLASSIFICATION):
|
|
return self.make_dataset_for_classification()
|
|
elif self.project.is_type_of(Project.SEQUENCE_LABELING):
|
|
return self.make_dataset_for_sequence_labeling()
|
|
elif self.project.is_type_of(Project.Seq2seq):
|
|
return self.make_dataset_for_seq2seq()
|
|
|
|
def make_dataset_for_classification(self):
|
|
annotations = self.get_annotations()
|
|
dataset = [[self.id, self.text, a.label.text, a.user.username, self.metadata]
|
|
for a in annotations]
|
|
return dataset
|
|
|
|
def make_dataset_for_sequence_labeling(self):
|
|
annotations = self.get_annotations()
|
|
dataset = [[self.id, ch, 'O', self.metadata] for ch in self.text]
|
|
for a in annotations:
|
|
for i in range(a.start_offset, a.end_offset):
|
|
if i == a.start_offset:
|
|
dataset[i][2] = 'B-{}'.format(a.label.text)
|
|
else:
|
|
dataset[i][2] = 'I-{}'.format(a.label.text)
|
|
return dataset
|
|
|
|
def make_dataset_for_seq2seq(self):
|
|
annotations = self.get_annotations()
|
|
dataset = [[self.id, self.text, a.text, a.user.username, self.metadata]
|
|
for a in annotations]
|
|
return dataset
|
|
|
|
def to_json(self):
|
|
return self.make_dataset_json()
|
|
|
|
def make_dataset_json(self):
|
|
if self.project.is_type_of(Project.DOCUMENT_CLASSIFICATION):
|
|
return self.make_dataset_for_classification_json()
|
|
elif self.project.is_type_of(Project.SEQUENCE_LABELING):
|
|
return self.make_dataset_for_sequence_labeling_json()
|
|
elif self.project.is_type_of(Project.Seq2seq):
|
|
return self.make_dataset_for_seq2seq_json()
|
|
|
|
def make_dataset_for_classification_json(self):
|
|
annotations = self.get_annotations()
|
|
labels = [a.label.text for a in annotations]
|
|
username = annotations[0].user.username
|
|
dataset = {'doc_id': self.id, 'text': self.text, 'labels': labels, 'username': username, 'metadata': json.loads(self.metadata)}
|
|
return dataset
|
|
|
|
def make_dataset_for_sequence_labeling_json(self):
|
|
annotations = self.get_annotations()
|
|
entities = [(a.start_offset, a.end_offset, a.label.text) for a in annotations]
|
|
username = annotations[0].user.username
|
|
dataset = {'doc_id': self.id, 'text': self.text, 'entities': entities, 'username': username, 'metadata': json.loads(self.metadata)}
|
|
return dataset
|
|
|
|
def make_dataset_for_seq2seq_json(self):
|
|
annotations = self.get_annotations()
|
|
sentences = [a.text for a in annotations]
|
|
username = annotations[0].user.username
|
|
dataset = {'doc_id': self.id, 'text': self.text, 'sentences': sentences, 'username': username, 'metadata': json.loads(self.metadata)}
|
|
return dataset
|
|
|
|
def __str__(self):
|
|
return self.text[:50]
|
|
|
|
|
|
class Annotation(models.Model):
|
|
prob = models.FloatField(default=0.0)
|
|
manual = models.BooleanField(default=False)
|
|
user = models.ForeignKey(User, on_delete=models.CASCADE)
|
|
|
|
class Meta:
|
|
abstract = True
|
|
|
|
|
|
class DocumentAnnotation(Annotation):
|
|
document = models.ForeignKey(Document, related_name='doc_annotations', on_delete=models.CASCADE)
|
|
label = models.ForeignKey(Label, on_delete=models.CASCADE)
|
|
|
|
class Meta:
|
|
unique_together = ('document', 'user', 'label')
|
|
|
|
|
|
class SequenceAnnotation(Annotation):
|
|
document = models.ForeignKey(Document, related_name='seq_annotations', on_delete=models.CASCADE)
|
|
label = models.ForeignKey(Label, on_delete=models.CASCADE)
|
|
start_offset = models.IntegerField()
|
|
end_offset = models.IntegerField()
|
|
|
|
def clean(self):
|
|
if self.start_offset >= self.end_offset:
|
|
raise ValidationError('start_offset is after end_offset')
|
|
|
|
class Meta:
|
|
unique_together = ('document', 'user', 'label', 'start_offset', 'end_offset')
|
|
|
|
|
|
class Seq2seqAnnotation(Annotation):
|
|
document = models.ForeignKey(Document, related_name='seq2seq_annotations', on_delete=models.CASCADE)
|
|
text = models.TextField()
|
|
|
|
class Meta:
|
|
unique_together = ('document', 'user', 'text')
|