You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

446 lines
13 KiB

import csv
import io
import itertools
import json
import re
from collections import defaultdict
from random import Random
from django.db import transaction
from rest_framework.renderers import JSONRenderer
from seqeval.metrics.sequence_labeling import get_entities
from app.settings import IMPORT_BATCH_SIZE
from .exceptions import FileParseException
from .models import Label
from .serializers import DocumentSerializer, LabelSerializer
def extract_label(tag):
ptn = re.compile(r'(B|I|E|S)-(.+)')
m = ptn.match(tag)
if m:
return m.groups()[1]
else:
return tag
class BaseStorage(object):
def __init__(self, data, project):
self.data = data
self.project = project
@transaction.atomic
def save(self, user):
raise NotImplementedError()
def save_doc(self, data):
serializer = DocumentSerializer(data=data, many=True)
serializer.is_valid(raise_exception=True)
doc = serializer.save(project=self.project)
return doc
def save_label(self, data):
serializer = LabelSerializer(data=data, many=True)
serializer.is_valid(raise_exception=True)
label = serializer.save(project=self.project)
return label
def save_annotation(self, data, user):
annotation_serializer = self.project.get_annotation_serializer()
serializer = annotation_serializer(data=data, many=True)
serializer.is_valid(raise_exception=True)
annotation = serializer.save(user=user)
return annotation
@classmethod
def extract_label(cls, data):
return [d.get('labels', []) for d in data]
@classmethod
def exclude_created_labels(cls, labels, created):
return [label for label in labels if label not in created]
@classmethod
def to_serializer_format(cls, labels, created, random_seed=None):
existing_shortkeys = {(label.suffix_key, label.prefix_key)
for label in created.values()}
serializer_labels = []
for label in sorted(labels):
serializer_label = {'text': label}
shortkey = cls.get_shortkey(label, existing_shortkeys)
if shortkey:
serializer_label['suffix_key'] = shortkey[0]
serializer_label['prefix_key'] = shortkey[1]
existing_shortkeys.add(shortkey)
color = Color.random(seed=random_seed)
serializer_label['background_color'] = color.hex
serializer_label['text_color'] = color.contrast_color.hex
serializer_labels.append(serializer_label)
return serializer_labels
@classmethod
def get_shortkey(cls, label, existing_shortkeys):
model_prefix_keys = [key for (key, _) in Label.PREFIX_KEYS]
prefix_keys = [None] + model_prefix_keys
model_suffix_keys = {key for (key, _) in Label.SUFFIX_KEYS}
suffix_keys = [key for key in label.lower() if key in model_suffix_keys]
for shortkey in itertools.product(suffix_keys, prefix_keys):
if shortkey not in existing_shortkeys:
return shortkey
return None
@classmethod
def update_saved_labels(cls, saved, new):
for label in new:
saved[label.text] = label
return saved
class PlainStorage(BaseStorage):
@transaction.atomic
def save(self, user):
for text in self.data:
self.save_doc(text)
class ClassificationStorage(BaseStorage):
"""Store json for text classification.
The format is as follows:
{"text": "Python is awesome!", "labels": ["positive"]}
...
"""
@transaction.atomic
def save(self, user):
saved_labels = {label.text: label for label in self.project.labels.all()}
for data in self.data:
docs = self.save_doc(data)
labels = self.extract_label(data)
unique_labels = self.extract_unique_labels(labels)
unique_labels = self.exclude_created_labels(unique_labels, saved_labels)
unique_labels = self.to_serializer_format(unique_labels, saved_labels)
new_labels = self.save_label(unique_labels)
saved_labels = self.update_saved_labels(saved_labels, new_labels)
annotations = self.make_annotations(docs, labels, saved_labels)
self.save_annotation(annotations, user)
@classmethod
def extract_unique_labels(cls, labels):
return set(itertools.chain(*labels))
@classmethod
def make_annotations(cls, docs, labels, saved_labels):
annotations = []
for doc, label in zip(docs, labels):
for name in label:
label = saved_labels[name]
annotations.append({'document': doc.id, 'label': label.id})
return annotations
class SequenceLabelingStorage(BaseStorage):
"""Upload jsonl for sequence labeling.
The format is as follows:
{"text": "Python is awesome!", "labels": [[0, 6, "Product"],]}
...
"""
@transaction.atomic
def save(self, user):
saved_labels = {label.text: label for label in self.project.labels.all()}
for data in self.data:
docs = self.save_doc(data)
labels = self.extract_label(data)
unique_labels = self.extract_unique_labels(labels)
unique_labels = self.exclude_created_labels(unique_labels, saved_labels)
unique_labels = self.to_serializer_format(unique_labels, saved_labels)
new_labels = self.save_label(unique_labels)
saved_labels = self.update_saved_labels(saved_labels, new_labels)
annotations = self.make_annotations(docs, labels, saved_labels)
self.save_annotation(annotations, user)
@classmethod
def extract_unique_labels(cls, labels):
return set([label for _, _, label in itertools.chain(*labels)])
@classmethod
def make_annotations(cls, docs, labels, saved_labels):
annotations = []
for doc, spans in zip(docs, labels):
for span in spans:
start_offset, end_offset, name = span
label = saved_labels[name]
annotations.append({'document': doc.id,
'label': label.id,
'start_offset': start_offset,
'end_offset': end_offset})
return annotations
class Seq2seqStorage(BaseStorage):
"""Store json for seq2seq.
The format is as follows:
{"text": "Hello, World!", "labels": ["こんにちは、世界!"]}
...
"""
@transaction.atomic
def save(self, user):
for data in self.data:
doc = self.save_doc(data)
labels = self.extract_label(data)
annotations = self.make_annotations(doc, labels)
self.save_annotation(annotations, user)
@classmethod
def make_annotations(cls, docs, labels):
annotations = []
for doc, texts in zip(docs, labels):
for text in texts:
annotations.append({'document': doc.id, 'text': text})
return annotations
class FileParser(object):
def parse(self, file):
raise NotImplementedError()
class CoNLLParser(FileParser):
"""Uploads CoNLL format file.
The file format is tab-separated values.
A blank line is required at the end of a sentence.
For example:
```
EU B-ORG
rejects O
German B-MISC
call O
to O
boycott O
British B-MISC
lamb O
. O
Peter B-PER
Blackburn I-PER
...
```
"""
def parse(self, file):
"""Store json for seq2seq.
Return format:
{"text": "Python is awesome!", "labels": [[0, 6, "Product"],]}
...
"""
words, tags = [], []
data = []
for i, line in enumerate(file, start=1):
if len(data) >= IMPORT_BATCH_SIZE:
yield data
data = []
line = line.decode('utf-8')
line = line.strip()
if line:
try:
word, tag = line.split('\t')
except ValueError:
raise FileParseException(line_num=i, line=line)
words.append(word)
tags.append(tag)
elif words and tags:
j = self.calc_char_offset(words, tags)
data.append(j)
words, tags = [], []
if len(words) > 0:
j = self.calc_char_offset(words, tags)
data.append(j)
if data:
yield data
@classmethod
def calc_char_offset(cls, words, tags):
doc = ' '.join(words)
j = {'text': ' '.join(words), 'labels': []}
pos = defaultdict(int)
for label, start_offset, end_offset in get_entities(tags):
entity = ' '.join(words[start_offset: end_offset + 1])
char_left = doc.index(entity, pos[entity])
char_right = char_left + len(entity)
span = [char_left, char_right, label]
j['labels'].append(span)
pos[entity] = char_right
return j
class PlainTextParser(FileParser):
"""Uploads plain text.
The file format is as follows:
```
EU rejects German call to boycott British lamb.
President Obama is speaking at the White House.
...
```
"""
def parse(self, file):
file = io.TextIOWrapper(file, encoding='utf-8')
while True:
batch = list(itertools.islice(file, IMPORT_BATCH_SIZE))
if not batch:
break
yield [{'text': line.strip()} for line in batch]
class CSVParser(FileParser):
"""Uploads csv file.
The file format is comma separated values.
Column names are required at the top of a file.
For example:
```
text, label
"EU rejects German call to boycott British lamb.",Politics
"President Obama is speaking at the White House.",Politics
"He lives in Newark, Ohio.",Other
...
```
"""
def parse(self, file):
file = io.TextIOWrapper(file, encoding='utf-8')
reader = csv.reader(file)
columns = next(reader)
data = []
for i, row in enumerate(reader, start=2):
if len(data) >= IMPORT_BATCH_SIZE:
yield data
data = []
if len(row) == len(columns) and len(row) >= 2:
text, label = row[:2]
meta = json.dumps(dict(zip(columns[2:], row[2:])))
j = {'text': text, 'labels': [label], 'meta': meta}
data.append(j)
else:
raise FileParseException(line_num=i, line=row)
if data:
yield data
class JSONParser(FileParser):
def parse(self, file):
data = []
for i, line in enumerate(file, start=1):
if len(data) >= IMPORT_BATCH_SIZE:
yield data
data = []
try:
j = json.loads(line)
j['meta'] = json.dumps(j.get('meta', {}))
data.append(j)
except json.decoder.JSONDecodeError:
raise FileParseException(line_num=i, line=line)
if data:
yield data
class JSONLRenderer(JSONRenderer):
def render(self, data, accepted_media_type=None, renderer_context=None):
"""
Render `data` into JSON, returning a bytestring.
"""
if data is None:
return bytes()
if not isinstance(data, list):
data = [data]
for d in data:
yield json.dumps(d,
cls=self.encoder_class,
ensure_ascii=self.ensure_ascii,
allow_nan=not self.strict) + '\n'
class JSONPainter(object):
def paint(self, documents):
serializer = DocumentSerializer(documents, many=True)
data = []
for d in serializer.data:
d['meta'] = json.loads(d['meta'])
for a in d['annotations']:
a.pop('id')
a.pop('prob')
a.pop('document')
data.append(d)
return data
class CSVPainter(JSONPainter):
def paint(self, documents):
data = super().paint(documents)
res = []
for d in data:
annotations = d.pop('annotations')
for a in annotations:
res.append({**d, **a})
return res
class Color:
def __init__(self, red, green, blue):
self.red = red
self.green = green
self.blue = blue
@property
def contrast_color(self):
"""Generate black or white color.
Ensure that text and background color combinations provide
sufficient contrast when viewed by someone having color deficits or
when viewed on a black and white screen.
Algorithm from w3c:
* https://www.w3.org/TR/AERT/#color-contrast
"""
return Color.white() if self.brightness < 128 else Color.black()
@property
def brightness(self):
return ((self.red * 299) + (self.green * 587) + (self.blue * 114)) / 1000
@property
def hex(self):
return '#{:02x}{:02x}{:02x}'.format(self.red, self.green, self.blue)
@classmethod
def white(cls):
return cls(red=255, green=255, blue=255)
@classmethod
def black(cls):
return cls(red=0, green=0, blue=0)
@classmethod
def random(cls, seed=None):
rgb = Random(seed).choices(range(256), k=3)
return cls(*rgb)