mirror of https://github.com/doccano/doccano.git
pythonannotation-tooldatasetsactive-learningtext-annotationdatasetnatural-language-processingdata-labelingmachine-learning
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
37 lines
1.4 KiB
37 lines
1.4 KiB
from auto_labeling_pipeline.models import RequestModelFactory
|
|
from rest_framework import serializers
|
|
|
|
from .models import AutoLabelingConfig
|
|
|
|
|
|
class AutoLabelingConfigSerializer(serializers.ModelSerializer):
|
|
class Meta:
|
|
model = AutoLabelingConfig
|
|
fields = ("id", "model_name", "model_attrs", "template", "label_mapping", "default", "task_type")
|
|
read_only_fields = ("created_at", "updated_at")
|
|
|
|
def validate_model_name(self, value):
|
|
try:
|
|
RequestModelFactory.find(value)
|
|
except NameError:
|
|
raise serializers.ValidationError(f"The specified model name {value} does not exist.")
|
|
return value
|
|
|
|
def valid_label_mapping(self, value):
|
|
if isinstance(value, dict):
|
|
return value
|
|
else:
|
|
raise serializers.ValidationError(f"The {value} is not a dictionary. Please specify it as a dictionary.")
|
|
|
|
def validate(self, data):
|
|
try:
|
|
RequestModelFactory.create(data["model_name"], data["model_attrs"])
|
|
except Exception:
|
|
model = RequestModelFactory.find(data["model_name"])
|
|
schema = model.schema()
|
|
required_fields = ", ".join(schema["required"]) if "required" in schema else ""
|
|
raise serializers.ValidationError(
|
|
"The attributes does not match the model."
|
|
"You need to correctly specify the required fields: {}".format(required_fields)
|
|
)
|
|
return data
|