mirror of https://github.com/doccano/doccano.git
pythondatasetsactive-learningtext-annotationdatasetnatural-language-processingdata-labelingmachine-learningannotation-tool
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
85 lines
3.0 KiB
85 lines
3.0 KiB
from . import builders, catalog, cleaners, data, labels, parsers, readers
|
|
from projects.models import (
|
|
DOCUMENT_CLASSIFICATION,
|
|
IMAGE_CLASSIFICATION,
|
|
INTENT_DETECTION_AND_SLOT_FILLING,
|
|
SEQ2SEQ,
|
|
SEQUENCE_LABELING,
|
|
SPEECH2TEXT,
|
|
)
|
|
|
|
|
|
def get_data_class(project_type: str):
|
|
text_projects = [DOCUMENT_CLASSIFICATION, SEQUENCE_LABELING, SEQ2SEQ, INTENT_DETECTION_AND_SLOT_FILLING]
|
|
if project_type in text_projects:
|
|
return data.TextData
|
|
else:
|
|
return data.FileData
|
|
|
|
|
|
def create_parser(file_format: str, **kwargs):
|
|
mapping = {
|
|
catalog.TextFile.name: parsers.TextFileParser,
|
|
catalog.TextLine.name: parsers.LineParser,
|
|
catalog.CSV.name: parsers.CSVParser,
|
|
catalog.JSONL.name: parsers.JSONLParser,
|
|
catalog.JSON.name: parsers.JSONParser,
|
|
catalog.FastText.name: parsers.FastTextParser,
|
|
catalog.Excel.name: parsers.ExcelParser,
|
|
catalog.CoNLL.name: parsers.CoNLLParser,
|
|
catalog.ImageFile.name: parsers.PlainParser,
|
|
catalog.AudioFile.name: parsers.PlainParser,
|
|
}
|
|
if file_format not in mapping:
|
|
raise ValueError(f"Invalid format: {file_format}")
|
|
return mapping[file_format](**kwargs)
|
|
|
|
|
|
def get_label_class(project_type: str):
|
|
mapping = {
|
|
DOCUMENT_CLASSIFICATION: labels.CategoryLabel,
|
|
SEQUENCE_LABELING: labels.SpanLabel,
|
|
SEQ2SEQ: labels.TextLabel,
|
|
IMAGE_CLASSIFICATION: labels.CategoryLabel,
|
|
SPEECH2TEXT: labels.TextLabel,
|
|
}
|
|
if project_type not in mapping:
|
|
ValueError(f"Invalid project type: {project_type}")
|
|
return mapping[project_type]
|
|
|
|
|
|
def create_cleaner(project):
|
|
mapping = {
|
|
DOCUMENT_CLASSIFICATION: cleaners.CategoryCleaner,
|
|
SEQUENCE_LABELING: cleaners.SpanCleaner,
|
|
IMAGE_CLASSIFICATION: cleaners.CategoryCleaner,
|
|
}
|
|
if project.project_type not in mapping:
|
|
return cleaners.Cleaner(project)
|
|
cleaner_class = mapping.get(project.project_type, cleaners.Cleaner)
|
|
return cleaner_class(project)
|
|
|
|
|
|
def create_builder(project, **kwargs):
|
|
if not project.is_text_project:
|
|
return builders.PlainBuilder(data_class=get_data_class(project.project_type))
|
|
|
|
data_column = builders.DataColumn(
|
|
name=kwargs.get("column_data") or readers.DEFAULT_TEXT_COLUMN, value_class=get_data_class(project.project_type)
|
|
)
|
|
# If project is intent detection and slot filling,
|
|
# column names are fixed: entities, cats
|
|
if project.project_type == INTENT_DETECTION_AND_SLOT_FILLING:
|
|
label_columns = [
|
|
builders.LabelColumn(name="cats", value_class=labels.CategoryLabel),
|
|
builders.LabelColumn(name="entities", value_class=labels.SpanLabel),
|
|
]
|
|
else:
|
|
label_columns = [
|
|
builders.LabelColumn(
|
|
name=kwargs.get("column_label") or readers.DEFAULT_LABEL_COLUMN,
|
|
value_class=get_label_class(project.project_type),
|
|
)
|
|
]
|
|
builder = builders.ColumnBuilder(data_column=data_column, label_columns=label_columns)
|
|
return builder
|