You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

255 lines
8.8 KiB

import csv
import io
import json
from typing import Dict, Iterator, List, Optional, Type
import pydantic.error_wrappers
import pyexcel
from chardet.universaldetector import UniversalDetector
from seqeval.scheme import BILOU, IOB2, IOBES, IOE2, Tokens
from .data import BaseData
from .exception import FileParseException
from .label import Label
from .labels import Labels
class Record:
def __init__(self,
data: Type[BaseData],
label: List[Label] = None):
if label is None:
label = []
self._data = data
self._label = label
def __str__(self):
return f'{self._data}\t{self._label}'
@property
def data(self):
return self._data.dict()
def annotation(self, mapping: Dict[str, int]):
labels = Labels(self._label)
labels = labels.replace_label(mapping)
return labels.dict()
@property
def label(self):
return [
{
'text': label.name
} for label in self._label
if label.has_name() and label.name
]
class Dataset:
def __init__(self,
filenames: List[str],
data_class: Type[BaseData],
label_class: Type[Label],
encoding: Optional[str] = None,
**kwargs):
self.filenames = filenames
self.data_class = data_class
self.label_class = label_class
self.encoding = encoding
self.kwargs = kwargs
def __iter__(self) -> Iterator[Record]:
for filename in self.filenames:
try:
yield from self.load(filename)
except UnicodeDecodeError as err:
message = str(err)
raise FileParseException(filename, line_num=-1, message=message)
def load(self, filename: str) -> Iterator[Record]:
"""Loads a file content."""
encoding = self.detect_encoding(filename)
with open(filename, encoding=encoding) as f:
data = self.data_class.parse(filename=filename, text=f.read())
record = Record(data=data)
yield record
def detect_encoding(self, filename: str, buffer_size=io.DEFAULT_BUFFER_SIZE):
if self.encoding != 'Auto':
return self.encoding
with open(filename, 'rb') as f:
detector = UniversalDetector()
while True:
read = f.read(buffer_size)
detector.feed(read)
if detector.done:
break
if detector.done:
return detector.result['encoding']
else:
return 'utf-8'
def from_row(self, filename: str, row: Dict, line_num: int) -> Record:
column_data = self.kwargs.get('column_data', 'text')
if column_data not in row:
message = f'{column_data} does not exist.'
raise FileParseException(filename, line_num, message)
text = row.pop(column_data)
label = row.pop(self.kwargs.get('column_label', 'label'), [])
label = [label] if isinstance(label, str) else label
try:
label = [self.label_class.parse(o) for o in label]
except pydantic.error_wrappers.ValidationError:
label = []
data = self.data_class.parse(text=text, filename=filename, meta=row)
record = Record(data=data, label=label)
return record
class FileBaseDataset(Dataset):
def load(self, filename: str) -> Iterator[Record]:
data = self.data_class.parse(filename=filename)
record = Record(data=data)
yield record
class TextFileDataset(Dataset):
def load(self, filename: str) -> Iterator[Record]:
encoding = self.detect_encoding(filename)
with open(filename, encoding=encoding) as f:
data = self.data_class.parse(filename=filename, text=f.read())
record = Record(data=data)
yield record
class TextLineDataset(Dataset):
def load(self, filename: str) -> Iterator[Record]:
encoding = self.detect_encoding(filename)
with open(filename, encoding=encoding) as f:
for line in f:
data = self.data_class.parse(filename=filename, text=line.rstrip())
record = Record(data=data)
yield record
class CsvDataset(Dataset):
def load(self, filename: str) -> Iterator[Record]:
encoding = self.detect_encoding(filename)
with open(filename, encoding=encoding) as f:
delimiter = self.kwargs.get('delimiter', ',')
reader = csv.reader(f, delimiter=delimiter)
header = next(reader)
column_data = self.kwargs.get('column_data', 'text')
if column_data not in header:
message = f'Column `{column_data}` does not exist in the header: {header}'
raise FileParseException(filename, 1, message)
for line_num, row in enumerate(reader, start=2):
row = dict(zip(header, row))
yield self.from_row(filename, row, line_num)
class JSONDataset(Dataset):
def load(self, filename: str) -> Iterator[Record]:
encoding = self.detect_encoding(filename)
with open(filename, encoding=encoding) as f:
dataset = json.load(f)
for line_num, row in enumerate(dataset, start=1):
yield self.from_row(filename, row, line_num)
class JSONLDataset(Dataset):
def load(self, filename: str) -> Iterator[Record]:
encoding = self.detect_encoding(filename)
with open(filename, encoding=encoding) as f:
for line_num, line in enumerate(f, start=1):
row = json.loads(line)
yield self.from_row(filename, row, line_num)
class ExcelDataset(Dataset):
def load(self, filename: str) -> Iterator[Record]:
records = pyexcel.iget_records(file_name=filename)
for line_num, row in enumerate(records, start=1):
yield self.from_row(filename, row, line_num)
class FastTextDataset(Dataset):
def load(self, filename: str) -> Iterator[Record]:
encoding = self.detect_encoding(filename)
with open(filename, encoding=encoding) as f:
for line_num, line in enumerate(f, start=1):
labels = []
tokens = []
for token in line.rstrip().split(' '):
if token.startswith('__label__'):
if token == '__label__':
message = 'Label name is empty.'
raise FileParseException(filename, line_num, message)
label_name = token[len('__label__'):]
labels.append(self.label_class.parse(label_name))
else:
tokens.append(token)
text = ' '.join(tokens)
data = self.data_class.parse(filename=filename, text=text)
record = Record(data=data, label=labels)
yield record
class CoNLLDataset(Dataset):
def load(self, filename: str) -> Iterator[Record]:
encoding = self.detect_encoding(filename)
with open(filename, encoding=encoding) as f:
words, tags = [], []
delimiter = self.kwargs.get('delimiter', ' ')
for line_num, line in enumerate(f, start=1):
line = line.rstrip()
if line:
tokens = line.split('\t')
if len(tokens) != 2:
message = 'A line must be separated by tab and has two columns.'
raise FileParseException(filename, line_num, message)
word, tag = tokens
words.append(word)
tags.append(tag)
else:
text = delimiter.join(words)
data = self.data_class.parse(filename=filename, text=text)
labels = self.get_label(words, tags, delimiter)
record = Record(data=data, label=labels)
yield record
words, tags = [], []
def get_scheme(self, scheme: str):
mapping = {
'IOB2': IOB2,
'IOE2': IOE2,
'IOBES': IOBES,
'BILOU': BILOU
}
return mapping[scheme]
def get_label(self, words: List[str], tags: List[str], delimiter: str) -> List[Label]:
scheme = self.get_scheme(self.kwargs.get('scheme', 'IOB2'))
tokens = Tokens(tags, scheme)
labels = []
for entity in tokens.entities:
text = delimiter.join(words[:entity.start])
start = len(text) + len(delimiter) if text else len(text)
chunk = words[entity.start: entity.end]
text = delimiter.join(chunk)
end = start + len(text)
labels.append(self.label_class.parse((start, end, entity.tag)))
return labels