You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

596 lines
18 KiB

import base64
import csv
import io
import itertools
import json
import mimetypes
import re
from collections import defaultdict
import conllu
from chardet import UniversalDetector
from django.db import transaction
from django.conf import settings
from colour import Color
import pyexcel
from rest_framework.renderers import JSONRenderer
from seqeval.metrics.sequence_labeling import get_entities
from .exceptions import FileParseException
from .models import Label
from .serializers import DocumentSerializer, LabelSerializer
def extract_label(tag):
ptn = re.compile(r'(B|I|E|S)-(.+)')
m = ptn.match(tag)
if m:
return m.groups()[1]
else:
return tag
class BaseStorage(object):
def __init__(self, data, project):
self.data = data
self.project = project
@transaction.atomic
def save(self, user):
raise NotImplementedError()
def save_doc(self, data):
serializer = DocumentSerializer(data=data, many=True)
serializer.is_valid(raise_exception=True)
doc = serializer.save(project=self.project)
return doc
def save_label(self, data):
serializer = LabelSerializer(data=data, many=True)
serializer.is_valid(raise_exception=True)
label = serializer.save(project=self.project)
return label
def save_annotation(self, data, user):
annotation_serializer = self.project.get_annotation_serializer()
serializer = annotation_serializer(data=data, many=True)
serializer.is_valid(raise_exception=True)
annotation = serializer.save(user=user)
return annotation
@classmethod
def extract_label(cls, data):
return [d.get('labels', []) for d in data]
@classmethod
def exclude_created_labels(cls, labels, created):
return [label for label in labels if label not in created]
@classmethod
def to_serializer_format(cls, labels, created):
existing_shortkeys = {(label.suffix_key, label.prefix_key)
for label in created.values()}
serializer_labels = []
for label in sorted(labels):
serializer_label = {'text': label}
shortkey = cls.get_shortkey(label, existing_shortkeys)
if shortkey:
serializer_label['suffix_key'] = shortkey[0]
serializer_label['prefix_key'] = shortkey[1]
existing_shortkeys.add(shortkey)
background_color = Color(pick_for=label)
text_color = Color('white') if background_color.get_luminance() < 0.5 else Color('black')
serializer_label['background_color'] = background_color.hex
serializer_label['text_color'] = text_color.hex
serializer_labels.append(serializer_label)
return serializer_labels
@classmethod
def get_shortkey(cls, label, existing_shortkeys):
model_prefix_keys = [key for (key, _) in Label.PREFIX_KEYS]
prefix_keys = [None] + model_prefix_keys
model_suffix_keys = {key for (key, _) in Label.SUFFIX_KEYS}
suffix_keys = [key for key in label.lower() if key in model_suffix_keys]
for shortkey in itertools.product(suffix_keys, prefix_keys):
if shortkey not in existing_shortkeys:
return shortkey
return None
@classmethod
def update_saved_labels(cls, saved, new):
for label in new:
saved[label.text] = label
return saved
class PlainStorage(BaseStorage):
@transaction.atomic
def save(self, user):
for text in self.data:
self.save_doc(text)
class ClassificationStorage(BaseStorage):
"""Store json for text classification.
The format is as follows:
{"text": "Python is awesome!", "labels": ["positive"]}
...
"""
@transaction.atomic
def save(self, user):
saved_labels = {label.text: label for label in self.project.labels.all()}
for data in self.data:
docs = self.save_doc(data)
labels = self.extract_label(data)
unique_labels = self.extract_unique_labels(labels)
unique_labels = self.exclude_created_labels(unique_labels, saved_labels)
unique_labels = self.to_serializer_format(unique_labels, saved_labels)
new_labels = self.save_label(unique_labels)
saved_labels = self.update_saved_labels(saved_labels, new_labels)
annotations = self.make_annotations(docs, labels, saved_labels)
self.save_annotation(annotations, user)
@classmethod
def extract_unique_labels(cls, labels):
return set(itertools.chain(*labels))
@classmethod
def make_annotations(cls, docs, labels, saved_labels):
annotations = []
for doc, label in zip(docs, labels):
for name in label:
label = saved_labels[name]
annotations.append({'document': doc.id, 'label': label.id})
return annotations
class SequenceLabelingStorage(BaseStorage):
"""Upload jsonl for sequence labeling.
The format is as follows:
{"text": "Python is awesome!", "labels": [[0, 6, "Product"],]}
...
"""
@transaction.atomic
def save(self, user):
saved_labels = {label.text: label for label in self.project.labels.all()}
for data in self.data:
docs = self.save_doc(data)
labels = self.extract_label(data)
unique_labels = self.extract_unique_labels(labels)
unique_labels = self.exclude_created_labels(unique_labels, saved_labels)
unique_labels = self.to_serializer_format(unique_labels, saved_labels)
new_labels = self.save_label(unique_labels)
saved_labels = self.update_saved_labels(saved_labels, new_labels)
annotations = self.make_annotations(docs, labels, saved_labels)
self.save_annotation(annotations, user)
@classmethod
def extract_unique_labels(cls, labels):
return set([label for _, _, label in itertools.chain(*labels)])
@classmethod
def make_annotations(cls, docs, labels, saved_labels):
annotations = []
for doc, spans in zip(docs, labels):
for span in spans:
start_offset, end_offset, name = span
label = saved_labels[name]
annotations.append({'document': doc.id,
'label': label.id,
'start_offset': start_offset,
'end_offset': end_offset})
return annotations
class Seq2seqStorage(BaseStorage):
"""Store json for seq2seq.
The format is as follows:
{"text": "Hello, World!", "labels": ["こんにちは、世界!"]}
...
"""
@transaction.atomic
def save(self, user):
for data in self.data:
doc = self.save_doc(data)
labels = self.extract_label(data)
annotations = self.make_annotations(doc, labels)
self.save_annotation(annotations, user)
@classmethod
def make_annotations(cls, docs, labels):
annotations = []
for doc, texts in zip(docs, labels):
for text in texts:
annotations.append({'document': doc.id, 'text': text})
return annotations
class Speech2textStorage(BaseStorage):
"""Store json for speech2text.
The format is as follows:
{"audio": "data:audio/mpeg;base64,...", "transcription": "こんにちは、世界!"}
...
"""
@transaction.atomic
def save(self, user):
for data in self.data:
for audio in data:
audio['text'] = audio.pop('audio')
doc = self.save_doc(data)
annotations = self.make_annotations(doc, data)
self.save_annotation(annotations, user)
@classmethod
def make_annotations(cls, docs, data):
annotations = []
for doc, datum in zip(docs, data):
try:
annotations.append({'document': doc.id, 'text': datum['transcription']})
except KeyError:
continue
return annotations
class FileParser(object):
def parse(self, file):
raise NotImplementedError()
@staticmethod
def encode_metadata(data):
return json.dumps(data, ensure_ascii=False)
class CoNLLParser(FileParser):
"""Uploads CoNLL format file.
The file format is tab-separated values.
A blank line is required at the end of a sentence.
For example:
```
EU B-ORG
rejects O
German B-MISC
call O
to O
boycott O
British B-MISC
lamb O
. O
Peter B-PER
Blackburn I-PER
...
```
"""
def parse(self, file):
data = []
file = EncodedIO(file)
file = io.TextIOWrapper(file, encoding=file.encoding)
# Add check exception
field_parsers = {
"ne": lambda line, i: conllu.parser.parse_nullable_value(line[i]),
}
gen_parser = conllu.parse_incr(
file,
fields=("form", "ne"),
field_parsers=field_parsers
)
try:
for sentence in gen_parser:
if not sentence:
continue
if len(data) >= settings.IMPORT_BATCH_SIZE:
yield data
data = []
words, labels = [], []
for item in sentence:
word = item.get("form")
tag = item.get("ne")
if tag is not None:
char_left = sum(map(len, words)) + len(words)
char_right = char_left + len(word)
span = [char_left, char_right, tag]
labels.append(span)
words.append(word)
# Create and add JSONL
data.append({'text': ' '.join(words), 'labels': labels})
except conllu.parser.ParseException as e:
raise FileParseException(line_num=-1, line=str(e))
if data:
yield data
class PlainTextParser(FileParser):
"""Uploads plain text.
The file format is as follows:
```
EU rejects German call to boycott British lamb.
President Obama is speaking at the White House.
...
```
"""
def parse(self, file):
file = EncodedIO(file)
file = io.TextIOWrapper(file, encoding=file.encoding)
while True:
batch = list(itertools.islice(file, settings.IMPORT_BATCH_SIZE))
if not batch:
break
yield [{'text': line.strip()} for line in batch]
class CSVParser(FileParser):
"""Uploads csv file.
The file format is comma separated values.
Column names are required at the top of a file.
For example:
```
text, label
"EU rejects German call to boycott British lamb.",Politics
"President Obama is speaking at the White House.",Politics
"He lives in Newark, Ohio.",Other
...
```
"""
def parse(self, file):
file = EncodedIO(file)
file = io.TextIOWrapper(file, encoding=file.encoding)
reader = csv.reader(file)
yield from ExcelParser.parse_excel_csv_reader(reader)
class ExcelParser(FileParser):
def parse(self, file):
excel_book = pyexcel.iget_book(file_type="xlsx", file_content=file.read())
# Handle multiple sheets
for sheet_name in excel_book.sheet_names():
reader = excel_book[sheet_name].to_array()
yield from self.parse_excel_csv_reader(reader)
@staticmethod
def parse_excel_csv_reader(reader):
columns = next(reader)
data = []
if len(columns) == 1 and columns[0] != 'text':
data.append({'text': columns[0]})
for i, row in enumerate(reader, start=2):
if len(data) >= settings.IMPORT_BATCH_SIZE:
yield data
data = []
# Only text column
if len(row) <= len(columns) and len(row) == 1:
data.append({'text': row[0]})
# Text, labels and metadata columns
elif 2 <= len(row) <= len(columns):
datum = dict(zip(columns, row))
text, label = datum.pop('text'), datum.pop('label')
meta = FileParser.encode_metadata(datum)
if label != '':
j = {'text': text, 'labels': [label], 'meta': meta}
else:
j = {'text': text, 'meta': meta}
data.append(j)
else:
raise FileParseException(line_num=i, line=row)
if data:
yield data
class JSONParser(FileParser):
def parse(self, file):
file = EncodedIO(file)
file = io.TextIOWrapper(file, encoding=file.encoding)
data = []
for i, line in enumerate(file, start=1):
if len(data) >= settings.IMPORT_BATCH_SIZE:
yield data
data = []
try:
j = json.loads(line)
j['meta'] = FileParser.encode_metadata(j.get('meta', {}))
data.append(j)
except json.decoder.JSONDecodeError:
raise FileParseException(line_num=i, line=line)
if data:
yield data
class FastTextParser(FileParser):
"""
Parse files in fastText format.
Labels are marked with the __label__ prefix
and the corresponding text comes afterwards in the same line
For example:
```
__label__dog poodle
__label__house mansion
```
"""
def parse(self, file):
file = EncodedIO(file)
file = io.TextIOWrapper(file, encoding=file.encoding)
data = []
for i, line in enumerate(file, start=0):
if len(data) >= settings.IMPORT_BATCH_SIZE:
yield data
data = []
# Search labels and text, check correct syntax and append
labels = []
text = []
for token in line.rstrip().split(" "):
if token.startswith('__label__'):
if token == '__label__':
raise FileParseException(line_num=i, line=line)
labels.append(token[len('__label__'):])
else:
text.append(token)
# Check if text for labels is given
if not text:
raise FileParseException(line_num=i, line=line)
data.append({'text': " ".join(text), 'labels': labels})
if data:
yield data
class AudioParser(FileParser):
def parse(self, file):
file_type, _ = mimetypes.guess_type(file.name, strict=False)
if not file_type:
raise FileParseException(line_num=1, line='Unable to guess file type')
audio = base64.b64encode(file.read())
yield [{
'audio': f'data:{file_type};base64,{audio.decode("ascii")}',
'meta': json.dumps({'filename': file.name}),
}]
class JSONLRenderer(JSONRenderer):
def render(self, data, accepted_media_type=None, renderer_context=None):
"""
Render `data` into JSON, returning a bytestring.
"""
if data is None:
return bytes()
if not isinstance(data, list):
data = [data]
for d in data:
yield json.dumps(d,
cls=self.encoder_class,
ensure_ascii=self.ensure_ascii,
allow_nan=not self.strict) + '\n'
class JSONPainter(object):
def paint(self, documents):
serializer = DocumentSerializer(documents, many=True)
data = []
for d in serializer.data:
d['meta'] = json.loads(d['meta'])
for a in d['annotations']:
a.pop('id')
a.pop('prob')
a.pop('document')
data.append(d)
return data
@staticmethod
def paint_labels(documents, labels):
serializer_labels = LabelSerializer(labels, many=True)
serializer = DocumentSerializer(documents, many=True)
data = []
for d in serializer.data:
labels = []
for a in d['annotations']:
label_obj = [x for x in serializer_labels.data if x['id'] == a['label']][0]
label_text = label_obj['text']
label_start = a['start_offset']
label_end = a['end_offset']
labels.append([label_start, label_end, label_text])
d.pop('annotations')
d['labels'] = labels
d['meta'] = json.loads(d['meta'])
data.append(d)
return data
class CSVPainter(JSONPainter):
def paint(self, documents):
data = super().paint(documents)
res = []
for d in data:
annotations = d.pop('annotations')
for a in annotations:
res.append({**d, **a})
return res
def iterable_to_io(iterable, buffer_size=io.DEFAULT_BUFFER_SIZE):
"""See https://stackoverflow.com/a/20260030/3817588."""
class IterStream(io.RawIOBase):
def __init__(self):
self.leftover = None
def readable(self):
return True
def readinto(self, b):
try:
l = len(b) # We're supposed to return at most this much
chunk = self.leftover or next(iterable)
output, self.leftover = chunk[:l], chunk[l:]
b[:len(output)] = output
return len(output)
except StopIteration:
return 0 # indicate EOF
return io.BufferedReader(IterStream(), buffer_size=buffer_size)
class EncodedIO(io.RawIOBase):
def __init__(self, fobj, buffer_size=io.DEFAULT_BUFFER_SIZE, default_encoding='utf-8'):
buffer = b''
detector = UniversalDetector()
while True:
read = fobj.read(buffer_size)
detector.feed(read)
buffer += read
if detector.done or len(read) < buffer_size:
break
if detector.done:
self.encoding = detector.result['encoding']
else:
self.encoding = default_encoding
self._fobj = fobj
self._buffer = buffer
def readable(self):
return self._fobj.readable()
def readinto(self, b):
l = len(b)
chunk = self._buffer or self._fobj.read(l)
output, self._buffer = chunk[:l], chunk[l:]
b[:len(output)] = output
return len(output)