Browse Source

Describe how to use custom rest api

pull/1997/head
Hironsan 2 years ago
parent
commit
ee38de4105
5 changed files with 81 additions and 5 deletions
  1. 86
      docs/advanced/auto_labelling_config.md
  2. BIN
      docs/images/auto-labeling/custom_rest_request_body.png
  3. BIN
      docs/images/auto-labeling/custom_rest_request_parameters.png
  4. BIN
      docs/images/auto-labeling/custom_rest_request_template.png
  5. BIN
      docs/images/auto-labeling/custom_rest_request_test_parameters.png

86
docs/advanced/auto_labelling_config.md

@ -12,13 +12,15 @@ The tutorial is divided into several sections:
In this tutorial, we will show you how to set up auto-labeling using Amazon Comprehend Sentiment Analysis as an example. Therefore, we assume that you have a text classification project in doccano, an AWS account and be able to generate access keys.
## Select a Template
## Use pre-defined service
### Select a Template
First, move to the "settings" page and open "Auto Labeling" tab. The new tab should display a "Create" button and an empty table. Click the button and select "Amazon Comprehend Sentiment Analysis" from the dropdown menu:
![](../images/auto-labeling/select_template.png)
## Set Request Parameters
### Set Request Parameters
Next, you need to set parameters to send an API request. In the case of Amazon Comprehend Sentiment Analysis, the following parameters are required:
@ -35,7 +37,7 @@ Then, we will test them using the sample text to make sure whether the parameter
![](../images/auto-labeling/test_parameters.png)
## Specify Response Mapping
### Specify Response Mapping
Now, you can successfully fetch the API response. Next, you need to convert it to doccano format(below) with the mapping template([Jinja2](https://jinja.palletsprojects.com/en/2.11.x/) format).
@ -64,7 +66,7 @@ After setting the template, we will test them using the sample response. This re
![](../images/auto-labeling/test_mapping_template.png)
## Specify Label Mapping
### Specify Label Mapping
Once you specify the mapping template, you need to convert the label in the response into the one you defined at the label page.
@ -76,10 +78,84 @@ After adding the label mapping, we will test them using the sample response:
![](../images/auto-labeling/test_label_mapping.png)
## Enable the Feature
### Enable the Feature
Finally, move to the "annotation" page and click "Auto Labeling" button. It should display a "Slide" button for switching enable/disable auto-labeling feature. Try to enable it:
![](../images/auto-labeling/enable.png)
Each time you view a new document, it will be labeled automatically.
## Use your own API
First, select "Custom REST Request":
![](../images/auto-labeling/custom_rest_request_template.png)
Next, you need to build your own API. Any framework can be used. Here we will use [Flask](https://flask.palletsprojects.com/en/2.2.x/) to create a minimal application. This application always returns the same label(`{"label": "NEG"}`). We also call `get_json` method and output its return value to make sure we can receive the data.
```bash
from flask import Flask, request
app = Flask(__name__)
@app.route("/", methods=["POST"])
def predict():
print(request.get_json())
return {"label": "NEG"}
```
Save it as `hello.py` or something similar. Make sure to not call your application `flask.py` because this would conflict with Flask itself.
To run the application, use the `flask` command. You need to tell the Flask where your application is with the `--app` option.
```bash
$ flask --app hello run
* Serving Flask app 'hello'
* Debug mode: off
* Running on http://127.0.0.1:5000
Press CTRL+C to quit
```
OK. Let's return to doccano.
Next, you need to set parameters(`url` and `method`). Let's set the Flask application's URL and method:
![](../images/auto-labeling/custom_rest_request_parameters.png)
Next, select the add button next to Body. Enter `text` as key and `{{ text }}` as value. This value is a placeholder and will actually be replaced by your own text.
![](../images/auto-labeling/custom_rest_request_body.png)
Then, test the parameters with the sample text. If it is working correctly, it should return `{"label": "NEG"}`.
![](../images/auto-labeling/custom_rest_request_test_parameters.png)
You should also see the following in the console:
```bash
127.0.0.1 - - [13/Sep/2022 15:19:57] "GET / HTTP/1.1" 405 -
{'text': 'This is a test sentence.'}
```
Next, convert the response from your API into a format that doccano can handle. We can access the response by the `input` variable. The mapping template looks like the following:
```bash
[
{
"label": "{{ input.label }}"
}
]
```
Test the mapping template. If it is working correctly, it should be as follows:
```bash
[
{
"label": "NEG"
}
]
```
The rest is the same as when using a predefined service.

BIN
docs/images/auto-labeling/custom_rest_request_body.png

Before After
Width: 793  |  Height: 290  |  Size: 17 KiB

BIN
docs/images/auto-labeling/custom_rest_request_parameters.png

Before After
Width: 775  |  Height: 229  |  Size: 20 KiB

BIN
docs/images/auto-labeling/custom_rest_request_template.png

Before After
Width: 776  |  Height: 373  |  Size: 38 KiB

BIN
docs/images/auto-labeling/custom_rest_request_test_parameters.png

Before After
Width: 780  |  Height: 336  |  Size: 31 KiB
Loading…
Cancel
Save