|
|
import csv import io import itertools import json import re from collections import defaultdict
import conllu from chardet import UniversalDetector from django.db import transaction from django.conf import settings from colour import Color import pyexcel from rest_framework.renderers import JSONRenderer from seqeval.metrics.sequence_labeling import get_entities
from .exceptions import FileParseException from .models import Label from .serializers import DocumentSerializer, LabelSerializer
def extract_label(tag): ptn = re.compile(r'(B|I|E|S)-(.+)') m = ptn.match(tag) if m: return m.groups()[1] else: return tag
class BaseStorage(object):
def __init__(self, data, project): self.data = data self.project = project
@transaction.atomic def save(self, user): raise NotImplementedError()
def save_doc(self, data): serializer = DocumentSerializer(data=data, many=True) serializer.is_valid(raise_exception=True) doc = serializer.save(project=self.project) return doc
def save_label(self, data): serializer = LabelSerializer(data=data, many=True) serializer.is_valid(raise_exception=True) label = serializer.save(project=self.project) return label
def save_annotation(self, data, user): annotation_serializer = self.project.get_annotation_serializer() serializer = annotation_serializer(data=data, many=True) serializer.is_valid(raise_exception=True) annotation = serializer.save(user=user) return annotation
@classmethod def extract_label(cls, data): return [d.get('labels', []) for d in data]
@classmethod def exclude_created_labels(cls, labels, created): return [label for label in labels if label not in created]
@classmethod def to_serializer_format(cls, labels, created): existing_shortkeys = {(label.suffix_key, label.prefix_key) for label in created.values()}
serializer_labels = []
for label in sorted(labels): serializer_label = {'text': label}
shortkey = cls.get_shortkey(label, existing_shortkeys) if shortkey: serializer_label['suffix_key'] = shortkey[0] serializer_label['prefix_key'] = shortkey[1] existing_shortkeys.add(shortkey)
background_color = Color(pick_for=label) text_color = Color('white') if background_color.get_luminance() < 0.5 else Color('black') serializer_label['background_color'] = background_color.hex serializer_label['text_color'] = text_color.hex
serializer_labels.append(serializer_label)
return serializer_labels
@classmethod def get_shortkey(cls, label, existing_shortkeys): model_prefix_keys = [key for (key, _) in Label.PREFIX_KEYS] prefix_keys = [None] + model_prefix_keys
model_suffix_keys = {key for (key, _) in Label.SUFFIX_KEYS} suffix_keys = [key for key in label.lower() if key in model_suffix_keys]
for shortkey in itertools.product(suffix_keys, prefix_keys): if shortkey not in existing_shortkeys: return shortkey
return None
@classmethod def update_saved_labels(cls, saved, new): for label in new: saved[label.text] = label return saved
class PlainStorage(BaseStorage):
@transaction.atomic def save(self, user): for text in self.data: self.save_doc(text)
class ClassificationStorage(BaseStorage): """Store json for text classification.
The format is as follows: {"text": "Python is awesome!", "labels": ["positive"]} ... """
@transaction.atomic def save(self, user): saved_labels = {label.text: label for label in self.project.labels.all()} for data in self.data: docs = self.save_doc(data) labels = self.extract_label(data) unique_labels = self.extract_unique_labels(labels) unique_labels = self.exclude_created_labels(unique_labels, saved_labels) unique_labels = self.to_serializer_format(unique_labels, saved_labels) new_labels = self.save_label(unique_labels) saved_labels = self.update_saved_labels(saved_labels, new_labels) annotations = self.make_annotations(docs, labels, saved_labels) self.save_annotation(annotations, user)
@classmethod def extract_unique_labels(cls, labels): return set(itertools.chain(*labels))
@classmethod def make_annotations(cls, docs, labels, saved_labels): annotations = [] for doc, label in zip(docs, labels): for name in label: label = saved_labels[name] annotations.append({'document': doc.id, 'label': label.id}) return annotations
class SequenceLabelingStorage(BaseStorage): """Upload jsonl for sequence labeling.
The format is as follows: {"text": "Python is awesome!", "labels": [[0, 6, "Product"],]} ... """
@transaction.atomic def save(self, user): saved_labels = {label.text: label for label in self.project.labels.all()} for data in self.data: docs = self.save_doc(data) labels = self.extract_label(data) unique_labels = self.extract_unique_labels(labels) unique_labels = self.exclude_created_labels(unique_labels, saved_labels) unique_labels = self.to_serializer_format(unique_labels, saved_labels) new_labels = self.save_label(unique_labels) saved_labels = self.update_saved_labels(saved_labels, new_labels) annotations = self.make_annotations(docs, labels, saved_labels) self.save_annotation(annotations, user)
@classmethod def extract_unique_labels(cls, labels): return set([label for _, _, label in itertools.chain(*labels)])
@classmethod def make_annotations(cls, docs, labels, saved_labels): annotations = [] for doc, spans in zip(docs, labels): for span in spans: start_offset, end_offset, name = span label = saved_labels[name] annotations.append({'document': doc.id, 'label': label.id, 'start_offset': start_offset, 'end_offset': end_offset}) return annotations
class Seq2seqStorage(BaseStorage): """Store json for seq2seq.
The format is as follows: {"text": "Hello, World!", "labels": ["こんにちは、世界!"]} ... """
@transaction.atomic def save(self, user): for data in self.data: doc = self.save_doc(data) labels = self.extract_label(data) annotations = self.make_annotations(doc, labels) self.save_annotation(annotations, user)
@classmethod def make_annotations(cls, docs, labels): annotations = [] for doc, texts in zip(docs, labels): for text in texts: annotations.append({'document': doc.id, 'text': text}) return annotations
class FileParser(object):
def parse(self, file): raise NotImplementedError()
class CoNLLParser(FileParser): """Uploads CoNLL format file.
The file format is tab-separated values. A blank line is required at the end of a sentence. For example: ``` EU B-ORG rejects O German B-MISC call O to O boycott O British B-MISC lamb O . O
Peter B-PER Blackburn I-PER ... ``` """
def parse(self, file): data = [] file = EncodedIO(file) file = io.TextIOWrapper(file, encoding=file.encoding)
# Add check exception
field_parsers = { "ne": lambda line, i: conllu.parser.parse_nullable_value(line[i]), }
gen_parser = conllu.parse_incr( file, fields=("form", "ne"), field_parsers=field_parsers )
try: for sentence in gen_parser: if not sentence: continue if len(data) >= settings.IMPORT_BATCH_SIZE: yield data data = [] words, labels = [], [] for item in sentence: word = item.get("form") tag = item.get("ne")
if tag is not None: char_left = sum(map(len, words)) + len(words) char_right = char_left + len(word) span = [char_left, char_right, tag] labels.append(span)
words.append(word)
# Create and add JSONL data.append({'text': ' '.join(words), 'labels': labels})
except conllu.parser.ParseException as e: raise FileParseException(line_num=-1, line=str(e))
if data: yield data
class PlainTextParser(FileParser): """Uploads plain text.
The file format is as follows: ``` EU rejects German call to boycott British lamb. President Obama is speaking at the White House. ... ``` """
def parse(self, file): file = EncodedIO(file) file = io.TextIOWrapper(file, encoding=file.encoding) while True: batch = list(itertools.islice(file, settings.IMPORT_BATCH_SIZE)) if not batch: break yield [{'text': line.strip()} for line in batch]
class CSVParser(FileParser): """Uploads csv file.
The file format is comma separated values. Column names are required at the top of a file. For example: ``` text, label "EU rejects German call to boycott British lamb.",Politics "President Obama is speaking at the White House.",Politics "He lives in Newark, Ohio.",Other ... ``` """
def parse(self, file): file = EncodedIO(file) file = io.TextIOWrapper(file, encoding=file.encoding) reader = csv.reader(file) yield from ExcelParser.parse_excel_csv_reader(reader)
class ExcelParser(FileParser): def parse(self, file): excel_book = pyexcel.iget_book(file_type="xlsx", file_content=file.read()) # Handle multiple sheets for sheet_name in excel_book.sheet_names(): reader = excel_book[sheet_name].to_array() yield from self.parse_excel_csv_reader(reader)
@staticmethod def parse_excel_csv_reader(reader): columns = next(reader) data = [] if len(columns) == 1 and columns[0] != 'text': data.append({'text': columns[0]}) for i, row in enumerate(reader, start=2): if len(data) >= settings.IMPORT_BATCH_SIZE: yield data data = [] # Only text column if len(row) == len(columns) and len(row) == 1: data.append({'text': row[0]}) # Text, labels and metadata columns elif len(row) == len(columns) and len(row) >= 2: datum = dict(zip(columns, row)) text, label = datum.pop('text'), datum.pop('label') meta = json.dumps(datum) j = {'text': text, 'labels': [label], 'meta': meta} data.append(j) else: raise FileParseException(line_num=i, line=row) if data: yield data
class JSONParser(FileParser):
def parse(self, file): file = EncodedIO(file) file = io.TextIOWrapper(file, encoding=file.encoding) data = [] for i, line in enumerate(file, start=1): if len(data) >= settings.IMPORT_BATCH_SIZE: yield data data = [] try: j = json.loads(line) j['meta'] = json.dumps(j.get('meta', {})) data.append(j) except json.decoder.JSONDecodeError: raise FileParseException(line_num=i, line=line) if data: yield data
class JSONLRenderer(JSONRenderer):
def render(self, data, accepted_media_type=None, renderer_context=None): """
Render `data` into JSON, returning a bytestring. """
if data is None: return bytes()
if not isinstance(data, list): data = [data]
for d in data: yield json.dumps(d, cls=self.encoder_class, ensure_ascii=self.ensure_ascii, allow_nan=not self.strict) + '\n'
class JSONPainter(object):
def paint(self, documents): serializer = DocumentSerializer(documents, many=True) data = [] for d in serializer.data: d['meta'] = json.loads(d['meta']) for a in d['annotations']: a.pop('id') a.pop('prob') a.pop('document') data.append(d) return data
@staticmethod def paint_labels(documents, labels): serializer_labels = LabelSerializer(labels, many=True) serializer = DocumentSerializer(documents, many=True) data = [] for d in serializer.data: labels = [] for a in d['annotations']: label_obj = [x for x in serializer_labels.data if x['id'] == a['label']][0] label_text = label_obj['text'] label_start = a['start_offset'] label_end = a['end_offset'] labels.append([label_start, label_end, label_text]) d.pop('annotations') d['labels'] = labels d['meta'] = json.loads(d['meta']) data.append(d) return data
class CSVPainter(JSONPainter):
def paint(self, documents): data = super().paint(documents) res = [] for d in data: annotations = d.pop('annotations') for a in annotations: res.append({**d, **a}) return res
def iterable_to_io(iterable, buffer_size=io.DEFAULT_BUFFER_SIZE): """See https://stackoverflow.com/a/20260030/3817588.""" class IterStream(io.RawIOBase): def __init__(self): self.leftover = None
def readable(self): return True
def readinto(self, b): try: l = len(b) # We're supposed to return at most this much chunk = self.leftover or next(iterable) output, self.leftover = chunk[:l], chunk[l:] b[:len(output)] = output return len(output) except StopIteration: return 0 # indicate EOF
return io.BufferedReader(IterStream(), buffer_size=buffer_size)
class EncodedIO(io.RawIOBase): def __init__(self, fobj, buffer_size=io.DEFAULT_BUFFER_SIZE, default_encoding='utf-8'): buffer = b'' detector = UniversalDetector()
while True: read = fobj.read(buffer_size) detector.feed(read) buffer += read if detector.done or len(read) < buffer_size: break
if detector.done: self.encoding = detector.result['encoding'] else: self.encoding = default_encoding
self._fobj = fobj self._buffer = buffer
def readable(self): return self._fobj.readable()
def readinto(self, b): l = len(b) chunk = self._buffer or self._fobj.read(l) output, self._buffer = chunk[:l], chunk[l:] b[:len(output)] = output return len(output)
|